Let $X \left( e^{j \omega} \right)$ be the DTFT of a discrete-time signal $x \left[ n \right]$ given as
$$ x \left[ n \right] = \left( \frac{1}{3} \right)^{n} u \left[ n \right] \tag{1} $$
Determine a $6$-point causal sequence $a \left[ n \right]$ whose $6$-point DFT $A \left[ k \right]$ is the $6$ samples of the DTFT $X \left( e^{j \omega} \right)$ such that,
$$ A \left[ k \right] = X \left( e^{j 2 \pi k/6} \right), ~~~~ k = 0, 1, \ldots, 5 \tag{2} $$
As DFT can be obtained by the uniform sampling of DTFT of the signal, therefore, $$ A \left[{k} \right]= X \left( e^{j 2 \pi k/6} \right)= 1/(1-(1/3)\left( e^{-j 2 \pi k/6} \right))) $$ and how to convert $A \left[{k} \right]$ back to time domain signal $a \left[{n} \right]$. I tried using IDFT but it's too long is there any alternative method?