$$x\left[n\right]:=\text{discrete time signal}\tag{1}$$
The following plot is DTFT of$~x\left[n\right]~$
What I know so far are as below.
$$x\left[n\right]=\frac{1}{2\pi}\int_{0}^{2\pi}X\left(\exp\left(j\omega\right)\right)\exp\left(j\omega n\right)\,d\omega_{}\tag{2}$$
$$X\left(\exp\left(j\omega\right)\right)=\sum_{n=-\infty}^{\infty}x\left[n\right]\exp\left(-j\omega n\right)\tag{3}$$
I know the following property of DTFT.
$$\underbrace{x\left[n-k\right]}_\text{time domain}~~\leftrightarrow~~\underbrace{X\left(\exp\left(j\omega\right)\right)\exp\left(-j\omega k\right)}_\text{frequency domain}\tag{4}$$
The below plot is of DTFT of signal$~y\left[n\right]=x\left[n-2\right]~$
I can't get why right side takes$~\theta_{}\left(\omega_{}\right)=-2\omega_{}~$
Moreover, I even can't get why left side diagram can be held, since the following is held.
$$x\left[n-2\right]~~\leftrightarrow~~X\left(\exp\left(j\omega\right)\right)\exp\left(-j\omega 2\right)\tag{5}$$
What should I study first?

