Determine two values of $\sigma_{22}$ for which the maximum shear stress is 80 MPa
i know that
\begin{equation} \sigma_{ij} = [\sigma]^\top = \begin{bmatrix} \sigma_{11} & \tau_{21} & \tau_{31} \\ \tau_{12} & \sigma_{22} & \tau_{32} \\ \tau_{13} & \tau_{23} & \sigma_{33} \end{bmatrix} = \begin{bmatrix} 90 & 0 & 60 \\ 0 & \sigma_{yy} & 0 \\ 60 & 0 & 0 \end{bmatrix} \end{equation}
and i also know that $\tau_{max}=(\sigma_{I}-\sigma_{III})/2$ <=> $80 = (\sigma_{I}-\sigma_{III})/2$
but in the solutions appears that
Case 1
\begin{equation} \begin{aligned} \sigma_\mathrm{I} &= 120~\mbox{MPa} \\ \sigma_\mathrm{II} &= -30~\mbox{MPa} \\ \sigma_\mathrm{III} &=~? \\ \end{aligned} \end{equation}
\begin{equation} \begin{aligned} \tau_\mathrm{max} &= \frac{1}{2}(\sigma_\mathrm{I}-\sigma_\mathrm{III}) = 80~\mbox{MPa} \Leftrightarrow \sigma_\mathrm{III} = \sigma_\mathrm{I} - 2\tau_\mathrm{max} = -40~\mbox{MPa} \\ \end{aligned} \end{equation}
Case 2
\begin{equation} \begin{aligned} \sigma_\mathrm{I} &= ?~\mbox{MPa} \\ \sigma_\mathrm{II} &= 120~\mbox{MPa} \\ \sigma_\mathrm{III} &= -30~\mbox{MPa} \\ \end{aligned} \end{equation}
\begin{equation} \begin{aligned} \tau_\mathrm{max} &= \frac{1}{2}(\sigma_\mathrm{I}-\sigma_\mathrm{III}) = 80~\mbox{MPa} \Leftrightarrow \sigma_\mathrm{I} = \sigma_\mathrm{III} + 2\tau_\mathrm{max} = 130~\mbox{MPa} \\ \end{aligned} \end{equation}
\begin{equation} \therefore \sigma_{yy} = 130~\mbox{MPa} \vee \sigma_{yy} = -40~\mbox{MPa} \end{equation}
Is the solution right? If its right could someone explain me why is this true? \begin{equation} \begin{aligned} \sigma_\mathrm{I} &= 120~\mbox{MPa} \\ \sigma_\mathrm{II} &= -30~\mbox{MPa} \\ \end{aligned} \end{equation}
