$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\bbox[10px,#ffd]{\int_{0}^{1}{\ln\pars{2} - \ln\pars{1 + x^{2}} \over
1 - x}\,\dd x}
\\[5mm] = &\
-\int_{x\ =\ 0}^{x\ =\ 1}\bracks{\ln\pars{2} -
\ln\pars{1 + x^{2}}}\,\dd\ln\pars{1 - x}
\\[5mm] \stackrel{\mrm{IBP}}{=}\,\,\, &
\int_{0}^{1}\ln\pars{1 - x}\pars{-\,{2x \over 1 + x^{2}}}\,\dd x =
-2\int_{0}^{1}{x\ln\pars{1 - x} \over \pars{x + \ic}\pars{x - \ic}}\,\dd x
\\[5mm] = &\
-\int_{0}^{1}\ln\pars{1 - x}\pars{{1 \over x + \ic} +
{1 \over x - \ic}}\,\dd x =
-\,\Re\int_{0}^{1}{\ln\pars{1 - x} \over x + \ic}\,\dd x
\\[5mm] = &\
-\,\Re\int_{0}^{1}{\ln\pars{x} \over 1 + \ic - x}\,\dd x =
-\,\Re\int_{0}^{1}{\ln\pars{x} \over 1 - x/\pars{1 + \ic}}
\,{\dd x \over 1 + \ic}
\\[5mm] = &\
-\,\Re\int_{0}^{\pars{1\ -\ \ic}/2}{\ln\pars{\bracks{1 + \ic}x} \over
1 - x}\,\dd x
\\[5mm] \stackrel{\mrm{IBP}}{=}\,\,\,&
-2\,\Re\int_{0}^{\pars{1\ -\ \ic}/2}{\ln\pars{1 - x} \over x}\,\dd x
\\[5mm] = &\
2\,\Re\int_{0}^{\pars{1\ -\ \ic}/2}\mrm{Li}_{2}'\pars{x}\,\dd x =
2\,\Re\,\mrm{Li}_{2}\pars{1 - \ic \over 2}
\\[5mm] = &\
\mrm{Li}_{2}\pars{{1 \over 2} - {1 \over 2}\,\ic} +
\mrm{Li}_{2}\pars{{1 \over 2} + {1 \over 2}\,\ic}
\\[5mm] = &
{\pi^{2} \over 6} - \ln\pars{{1 \over 2} - {1 \over 2}\,\ic}
\ln\pars{{1 \over 2} + {1 \over 2}\,\ic}
\label{1}\tag{1}
\end{align}
In (\ref{1}) I used the
Euler Reflection Formula.
Then,
\begin{align}
&\bbox[10px,#ffd]{\int_{0}^{1}{\ln\pars{2} - \ln\pars{1 + x^{2}} \over
1 - x}\,\dd x} =
{\pi^{2} \over 6} -
\verts{-\,{1 \over 2}\,\ln\pars{2} - {1 \over 4}\,\pi\ic}^{\, 2}
\\[5mm] = &\
\bbx{{5\pi^{2} \over 48} - {1 \over 4}\,\ln^{2}\pars{2}}
\approx 0.9080
\end{align}