$2\sqrt{n+1}-2 \leq 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots + \frac{1}{\sqrt{n}} \leq 2\sqrt{n}-1$
We prove this by proving the following statements:
$2\sqrt{n+1}-2 \leq 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots + \frac{1}{\sqrt{n}}$
$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots + \frac{1}{\sqrt{n}} \leq 2\sqrt{n}-1$
Proof of (1) by Induction:
$\\ \\$
Base case: Notice that $2\sqrt{1+1} - 2 \leq 1$.
$\\ \\$
Inductive step: Suppose $2\sqrt{k+1}-2 \leq 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots + \frac{1}{\sqrt{k}}$.
Then, $2\sqrt{k+1}-2 + \frac{1}{\sqrt{k+1}} \leq 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}}$.
Thus, to show that $2\sqrt{k+2}-2 \leq 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}}$, we can simply show that $2\sqrt{k+2}-2 \leq 2\sqrt{k+1}-2 + \frac{1}{\sqrt{k+1}}$.
\begin{align}
& 2\sqrt{k+2}-2 \leq 2\sqrt{k+1}-2 + \frac{1}{\sqrt{k+1}} \\
\Longleftrightarrow & 2\sqrt{k^2+3k+2} - 2\sqrt{k+1} \leq 2k + 2 -2\sqrt{k+1} + 1 \\
\Longleftrightarrow & 2\sqrt{k^2+3k+2} \leq 2k+3 \\
\Longleftrightarrow & 4k^2+12k+8 \leq 4k^2+12k+9 \quad \text{as} \quad 2\sqrt{k^2+3k+2},2k+3 > 0 \\
\Longleftrightarrow & 8 \leq 9 \quad \text{which is true}
\end{align}
Thus, (1) is proven.
Proof of (2) by Induction:
$\\ \\$
Base case: Notice that $1 \leq 2\sqrt{1}-1$.
$\\ \\$
Inductive step: Suppose $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots + \frac{1}{\sqrt{k}} \leq 2\sqrt{k}-1$.
Then $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} \leq 2\sqrt{k}-1 + \frac{1}{\sqrt{k+1}}$.
Thus to show that $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} \leq 2\sqrt{k+1}-1$, we can simply show that $2\sqrt{k}-1 + \frac{1}{\sqrt{k+1}} \leq 2\sqrt{k+1}-1$.
\begin{align}
& 2\sqrt{k}-1 + \frac{1}{\sqrt{k+1}} \leq 2\sqrt{k+1}-1 \\
\Longleftrightarrow & 2\sqrt{k} + \frac{1}{\sqrt{k+1}} \leq 2\sqrt{k+1} \\
\Longleftrightarrow & 2\sqrt{k^2+k} + 1 \leq 2k+2 \\
\Longleftrightarrow & 2\sqrt{k^2+k} \leq 2k+1 \\
\Longleftrightarrow & 4k^2+4k \leq 4k^2+4k+1 \quad \text{as} \quad 2\sqrt{k^2+k},2k+1 > 0 \\
\Longleftrightarrow & 0 \leq 1 \quad \text{which is true}
\end{align}
Thus, (2) is proven.
We now see that $2\sqrt{n+1}-2 \leq 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots + \frac{1}{\sqrt{n}}$ and $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots + \frac{1}{\sqrt{n}} \leq 2\sqrt{n}-1$ are both true for all positive integers $n$. Thus, we conclude that $2\sqrt{n+1}-2 \leq 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots + \frac{1}{\sqrt{n}} \leq 2\sqrt{n}-1$ for all positive integers $n$.