I am looking at next semester's class schedule at my school, especially at a graduate course named Measure & Integration.
Officially it is described as "... an introduction to the principles, concepts and application of modern analysis. Topics include the Riemann integral, Lebesgue measure and integral, the Radon-Nikodym theorem, and applications to probability theory." Since it is a required course in all degree plans -- even for "light" concentration in math teaching, therefore I assume that it must be a basic course. However, when I scan the typical measure & integration textbooks, they generally require completion of at least one semester of real analysis as a prerequisite.
So here are my questions: (1) Is it possible to have a course in measure & integration without having completed real analysis? (PS. I am not totally clueless in various early topics in real analysis such as supremum and infimum, but I never took any real analysis class.) If it is possible, (2) I would love your suggestion to any textbook requiring little real analysis background, especially books with solutions/hints to the problem set. I would like to get ahead early by getting to know a little bit about it.
Thank you for your time and help.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
POST SCRIPT: I think I got what I am looking for, it is a book by Rene Schilling, Measure, Integrals & Martingales, Cambridge University Press. The author writes the book very informally, in down-to-earth style, he even maintains a blog listing the worked out solutions to the exercises here. Thank you for reading this posting.