Note that
$$
\left[\frac1{2n+1}\right]^{1/n}=\left[\frac13\frac35\frac57\cdots\frac{2n-1}{2n+1}\right]^{1/n}\le\left[\frac12\frac34\frac56\cdots\frac{2n-1}{2n}\right]^{1/n}\lt1
$$
Since $\lim\limits_{n\to\infty}(2n+1)^{1/n}=1$, the Squeeze Theorem says that
$$
\lim_{n\to\infty}\left[\frac12\frac34\frac56\cdots\frac{2n-1}{2n}\right]^{1/n}=1
$$
Addendum
Since $1+x\le e^x$ for all $x\in\mathbb{R}$, we easily have
$$
(1+\sqrt{n}/2)^2\le \left(e^{\sqrt{n}/2}\right)^2
$$
which implies that
$$
1+2n\le8e^{\sqrt{n}}
$$
Therefore
$$
1\le(1+2n)^{1/n}\le8^{1/n}e^{1/\sqrt{n}}
$$
By the Squeeze Theorem,
$$
\lim_{n\to\infty}(2n+1)^{1/n}=1
$$