Can one help finding this limit
$$\lim_{x \to 0}\frac{x^{3}-\sin^{2}x\tan x}{\tan(\sin x) - \sin (\tan x)}$$
L'Hospital's rule is permited.
(Find lim:$\lim_{x\to0} \frac{\tan(\tan x) - \sin(\sin x)}{\tan x -\sin x}$)
Can one help finding this limit
$$\lim_{x \to 0}\frac{x^{3}-\sin^{2}x\tan x}{\tan(\sin x) - \sin (\tan x)}$$
L'Hospital's rule is permited.
(Find lim:$\lim_{x\to0} \frac{\tan(\tan x) - \sin(\sin x)}{\tan x -\sin x}$)
Hint. Recall that, for $x$ near $0$, you have $$\tan x = x+\dfrac{x^3}{3}+\dfrac{2x^5}{15}+\dfrac{17x^7}{315}+\mathcal{O}(x^9)$$ $$ \sin x = x-\dfrac{x^3}{6}+\dfrac{x^5}{120}-\dfrac{17x^7}{720}+\mathcal{O}(x^9)$$ to obtain (using only relevant terms) $$\tan(\sin x) = x+\frac{x^3}{6}-\frac{x^5}{40}-\frac{107 x^7}{5040}+\mathcal{O}(x^9)$$ $$\sin (\tan x) = x+\frac{x^3}{6}-\frac{x^5}{40}-\frac{55 x^7}{1008}+\mathcal{O}(x^9)$$ $$x^{3}-\sin^{2}x\tan x = -\frac{x^7}{15}+\mathcal{O}(x^9)$$ Then the desired limit is equal to $-2$.
Seven months ago, I have posted this question of computing the limit \begin{equation*} \lim_{x\rightarrow 0}\frac{x^{3}-\sin ^{2}\tan x}{\tan (\sin x)-\sin (\tan x) }, \end{equation*} without making use of Taylor series. After that, I have wrote the fraction as a product \begin{equation*} \frac{x^{3}-\sin ^{2}\tan x}{x^{7}}\times \frac{x^{7}}{\tan (\sin x)-\sin (\tan x)} \end{equation*} and I\ have asked the limit of the first fraction in another post $ \lim_{x\rightarrow 0^{+}}\frac{\sin ^{2}x\tan x-x^{3}}{x^{7}}=\frac{1}{15} $
Paramanand has solved it and after I did it too in that post. However that technic of computations seems to do not apply for the second limit above. It follows that it remains to compute the second limit, or \begin{equation*} \lim_{x\rightarrow 0}\frac{\tan (\sin x)-\sin (\tan x)}{x^{7}}. \end{equation*} Recently, I have successfully computed a limit asked in the post A limit problem related to $\log \sec x$ where I\ developed some manipulations on limits. In this post, I am going to apply these manners of manipulations to compute this second limit and show that \begin{equation*} \lim_{x\rightarrow 0}\frac{\tan (\sin x)-\sin (\tan x)}{x^{7}}=\frac{1}{30}. \end{equation*} We shall use the following known limits \begin{equation*} \lim_{u\rightarrow 0}\frac{\tan u-u-\frac{1}{3}u^{3}-\frac{2}{15}u^{5}}{u^{7}% }=\frac{17}{315} \end{equation*} and \begin{equation*} \lim_{v\rightarrow 0}\frac{v-\frac{1}{6}v^{3}+\frac{1}{120}v^{5}-\sin v}{% v^{7}}=\frac{1}{5040}. \end{equation*} (Each one of this two limits can be computed with repeated use (7 times) of LHR).
The first step in the calculation process, is to convert the calculation in our limit, say $\lim_{x\rightarrow 0}\frac{f(x)}{x^{7}}$ into another limit say $\lim_{x\rightarrow 0}\frac{g(x)}{x^{7}}$ very simple comparatively to the original one. In the second step I will compute the second limit by just using limits which can be computed by LHR repeatedly, seven times to obtain the requested value. First, write \begin{eqnarray*} f(x) &=&\tan (\sin x)-\sin (\tan x) \\ &=&\left( \tan (\sin x)-\sin x-\frac{1}{3}\sin ^{3}x-\frac{2}{15}\sin ^{5}x\right) +\sin x+\frac{1}{3}\sin ^{3}x+\frac{2}{15}\sin ^{5}x \\ &&+\left( \tan x-\frac{1}{6}\tan ^{3}x+\frac{1}{120}\tan ^{5}x-\sin (\tan x)\right) -\tan x+\frac{1}{6}\tan ^{3}x-\frac{1}{120}\tan ^{5}x. \end{eqnarray*} Next, \begin{equation*} \left( \frac{\tan (\sin x)-\sin x-\frac{1}{3}\sin ^{3}x-\frac{2}{15}\sin ^{5}x}{x^{7}}\right) =\left( \frac{\tan (\sin x)-\sin x-\frac{1}{3}\sin ^{3}x-\frac{2}{15}\sin ^{5}x}{\sin ^{7}x}\right) \left( \frac{\sin x}{x}% \right) ^{7} \end{equation*} and since $\lim_{x\rightarrow 0}u(x)=\lim_{x\rightarrow 0}\sin x=0,$ then \begin{eqnarray*} \lim_{x\rightarrow 0}\left( \frac{\tan (\sin x)-\sin x-\frac{1}{3}\sin ^{3}x-% \frac{2}{15}\sin ^{5}x}{x^{7}}\right) &=&\lim_{x\rightarrow 0}\left( \frac{% \tan (\sin x)-\sin x-\frac{1}{3}\sin ^{3}x-\frac{2}{15}\sin ^{5}x}{\sin ^{7}x% }\right) \left( \frac{\sin x}{x}\right) ^{7} \\ &=&\left( \lim_{u\rightarrow 0}\frac{\tan u-u-\frac{1}{3}u^{3}-\frac{2}{15}% u^{5}}{u^{7}}\right) \left( \lim_{x\rightarrow 0}\frac{\sin x}{x}\right) ^{7} \\ &=&\left( \frac{17}{315}\right) \left( 1\right) ^{7}=\left( \frac{17}{315} \right) . \end{eqnarray*} The same way : \begin{equation*} \left( \frac{\tan x-\frac{1}{6}\tan ^{3}x+\frac{1}{120}\tan ^{5}x-\sin (\tan x)}{x^{7}}\right) =\left( \frac{\tan x-\frac{1}{6}\tan ^{3}x+\frac{1}{120} \tan ^{5}x-\sin (\tan x)}{\tan ^{7}x}\right) \left( \frac{\tan x}{x}\right) ^{7} \end{equation*}
and since $\lim_{x\rightarrow 0}v(x)=\lim_{x\rightarrow 0}\tan x=0,$ then \begin{eqnarray*} \lim_{x\rightarrow 0}\left( \frac{\tan x-\frac{1}{6}\tan ^{3}x+\frac{1}{120}% \tan ^{5}x-\sin (\tan x)}{x^{7}}\right) &=&\lim_{x\rightarrow 0}\left( \frac{\tan x-\frac{1}{6}\tan ^{3}x+\frac{1}{120}\tan ^{5}x-\sin (\tan x)}{% \tan ^{7}x}\right) \left( \frac{\tan x}{x}\right) ^{7} \\ &=&\left( \lim_{v\rightarrow 0}\frac{v-\frac{1}{6}v^{3}+\frac{1}{120}% v^{5}-\sin v}{v^{7}}\right) \left( \lim_{x\rightarrow 0}\frac{\tan x}{x} \right) ^{7} \\ &=&\left( \frac{1}{5040}\right) \left( 1\right) ^{7}=\frac{1}{5040}. \end{eqnarray*} It follows that
$$ \lim_{x\rightarrow 0}\frac{f(x)}{x^{7}}=\left( \frac{17}{315}\right) +\left(\frac{1}{5040}\right) +\lim_{x\rightarrow 0}\frac{g(x)}{x^{7}} \tag{k} $$
where $$ g(x)=+\sin x+\frac{1}{3}\sin ^{3}x+\frac{2}{15}\sin ^{5}x-\tan x+\frac{1}{6}% \tan ^{3}x-\frac{1}{120}\tan ^{5}x. $$
Now, taking into account the following limits which can be computed easily by repeated applications of LHR,
we transform $g(x)$ as follows \begin{eqnarray*} g(x) &=&\left( \sin x-x+\frac{1}{6}x^{3}-\frac{1}{120}x^{5}\right) +\left( x-% \frac{1}{6}x^{3}+\frac{1}{120}x^{5}\right) \\ &&+\frac{1}{3}\left( \sin ^{3}x-x^{3}+\frac{1}{2}x^{5}\right) +\frac{1}{3}% \left( -x^{3}+\frac{1}{2}x^{5}\right) \\ &&+\frac{2}{15}\left( \sin ^{5}x-x^{5}\right) +\frac{2}{15}x^{5} \\ &&-\left( \tan x-x-\frac{1}{3}x^{3}-\frac{2}{15}x^{5}\right) +\left( -x-% \frac{1}{3}x^{3}-\frac{2}{15}x^{5}\right) \\ &&+\frac{1}{6}\left( \tan ^{3}x-x^{3}-x^{5}\right) +\frac{1}{6}\left( x^{3}+x^{5}\right) \\ &&-\frac{1}{120}\left( \tan ^{5}x-x^{5}\right) -\frac{1}{120}x^{5} \end{eqnarray*} and then write $\frac{g(x)}{x^{7}}$ as follows \begin{eqnarray*} \frac{g(x)}{x^{7}} &=&\left( \frac{\sin x-x+\frac{1}{6}x^{3}-\frac{1}{120}% x^{5}}{x^{7}}\right) +\left( \frac{x-\frac{1}{6}x^{3}+\frac{1}{120}x^{5}}{% x^{7}}\right) \\ &&+\frac{1}{3}\left( \frac{\sin ^{3}x-x^{3}+\frac{1}{2}x^{5}}{x^{7}}\right) -% \frac{1}{3}\left( \frac{-x^{3}+\frac{1}{2}x^{5}}{x^{7}}\right) \\ &&+\frac{2}{15}\left( \frac{\sin ^{5}x-x^{5}}{x^{7}}\right) +\frac{2}{15}% \frac{x^{5}}{x^{7}} \\ &&-\left( \frac{\tan x-x-\frac{1}{3}x^{3}-\frac{2}{15}x^{5}}{x^{7}}\right) +\left( \frac{-x-\frac{1}{3}x^{3}-\frac{2}{15}x^{5}}{x^{7}}\right) \\ &&+\frac{1}{6}\left( \frac{\tan ^{3}x-x^{3}-x^{5}}{x^{7}}\right) +\frac{1}{6} \left( \frac{x^{3}+x^{5}}{x^{7}}\right) \\ &&-\frac{1}{120}\left( \frac{\tan ^{5}x-x^{5}}{x^{7}}\right) -\frac{1}{120} \frac{x^{5}}{x^{7}} \end{eqnarray*} Remark that \begin{equation*} \left( \tfrac{x-\frac{1}{6}x^{3}+\frac{1}{120}x^{5}}{x^{7}}\right) -\frac{1}{% 3}\left( \tfrac{-x^{3}+\frac{1}{2}x^{5}}{x^{7}}\right) +\frac{2}{15}\tfrac{% x^{5}}{x^{7}}+\left( \tfrac{-x-\frac{1}{3}x^{3}-\frac{2}{15}x^{5}}{x^{7}}% \right) +\frac{1}{6}\left( \tfrac{x^{3}+x^{5}}{x^{7}}\right) -\frac{1}{120}% \tfrac{x^{5}}{x^{7}}=0 \end{equation*} so \begin{eqnarray*} \frac{g(x)}{x^{7}} &=&\left( \frac{\sin x-x+\frac{1}{6}x^{3}-\frac{1}{120}% x^{5}}{x^{7}}\right) +\frac{1}{3}\left( \frac{\sin ^{3}x-x^{3}+\frac{1}{2}% x^{5}}{x^{7}}\right) \\ &&+\frac{2}{15}\left( \frac{\sin ^{5}x-x^{5}}{x^{7}}\right) -\left( \frac{% \tan x-x-\frac{1}{3}x^{3}-\frac{2}{15}x^{5}}{x^{7}}\right) \\ &&+\frac{1}{6}\left( \frac{\tan ^{3}x-x^{3}-x^{5}}{x^{7}}\right) -\frac{1}{% 120}\left( \frac{\tan ^{5}x-x^{5}}{x^{7}}\right) \end{eqnarray*} and by passing to the limit one obtains \begin{eqnarray*} \lim_{x\rightarrow 0}\frac{g(x)}{x^{7}} &=&\left( -\frac{1}{5040}\right) +% \frac{1}{3}\left( \frac{13}{120}\right) +\frac{2}{15}\left( -\frac{5}{6}% \right) -\left( \frac{17}{315}\right) +\frac{1}{6}\left( \frac{11}{15}% \right) -\frac{1}{120}\left( \frac{5}{3}\right) \\ &=&-\frac{1}{48}. \end{eqnarray*}
Using (k) it follows that $$ \lim_{x\rightarrow 0}\frac{f(x)}{x^{7}}=\left( \frac{17}{315}\right) +\left( \frac{1}{5040}\right) +\left( -\frac{1}{48}\right) =\frac{1}{30}. $$