I'm having some difficulty with this homework problem:
If $A=K[x_1,...,x_n]$, $K$ a field and $a_1,a_2,...,a_n $ $\in K$. The ideal $m=<x_1-a_1,...,x_n-a_n>$ is maximal.
I'm having some difficulty with this homework problem:
If $A=K[x_1,...,x_n]$, $K$ a field and $a_1,a_2,...,a_n $ $\in K$. The ideal $m=<x_1-a_1,...,x_n-a_n>$ is maximal.
Hint: Consider the evaluation map $K[x_1,\ldots,x_n]\to K$ which takes a polynomial $f(x_1,\ldots,x_n)$ to the point in $K$ given by $f(a_1,\ldots,a_n)$.