If $\displaystyle A = \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots\cdots\cdots+\frac{1}{\sqrt{999}}+\frac{1}{\sqrt{1000}}.$
Then $\lfloor A \rfloor$ is, where $\lfloor A\rfloor = A-\{A\}.$
$\bf{My\; Try::}$ Using $$\left(\sqrt{k}+\sqrt{k-1}\right)<2\sqrt{k}<\left(\sqrt{k+1}+\sqrt{k}\right)\;,$$ where $k\in N$ and $k\geq 2$
Then $$\displaystyle \left(\sqrt{k+1}-\sqrt{k}\right)<\frac{1}{2\sqrt{k}}<\left(\sqrt{k}-\sqrt{k-1}\right)$$
So $$\displaystyle 2\sum_{k=2}^{1000}\left(\sqrt{k+1}-\sqrt{k}\right)<\sum_{k=2}^{1000}\frac{1}{\sqrt{k}}<2\sum_{k=2}^{1000}\left(\sqrt{k}-\sqrt{k-1}\right)$$
So we get $$\displaystyle 2(10\sqrt{10}-\sqrt{2}) < A < 2(10\sqrt{10}-1)$$
So we get $$60.41\approx <A<\approx 61.24$$. So $$\lfloor A \rfloor = 61$$
My Question is how can we solve using Concept of definite Integral, plz explain me
Thanks