$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
$\ds{{\rm X}\pars{1} = 1\,,\qquad\mbox{and}\qquad
{\rm X}\pars{n} =
\sum_{i\ =\ 1}^{n - 1}{\rm X}\pars{i}{\rm X}\pars{n - i}\,,
\quad\mbox{for}\quad n\ >\ 1}$.
Lets $\ds{{\cal X}\pars{z} \equiv \sum_{n\ =\ 1}^{\infty}{\rm X}\pars{n}z^{n}}$,
with $\ds{\verts{z} < {1 \over 4}}$, such that
\begin{align}
{\cal X}\pars{z}&={\rm X}\pars{1}z + \sum_{n\ =\ 2}^{\infty}{\rm X}\pars{n}z^{n}
=z + \sum_{n\ =\ 2}^{\infty}\sum_{i\ =\ 1}^{n - 1}
{\rm X}\pars{i}{\rm X}\pars{n - i}z^{n}
\\[5mm]&=z + \sum_{i\ =\ 1}^{\infty}{\rm X}\pars{i}
\sum_{n\ =\ 1 + i}^{\infty}{\rm X}\pars{n - i}z^{n}
=z + \sum_{i\ =\ 1}^{\infty}{\rm X}\pars{i}
\sum_{n\ =\ 1}^{\infty}{\rm X}\pars{n}z^{n + i}
\\[5mm]&=z + \bracks{\sum_{i\ =\ 1}^{\infty}{\rm X}\pars{i}z^{i}}
\bracks{\sum_{n\ =\ 1}^{\infty}{\rm X}\pars{n}z^{n}}=z + {\cal X}^{2}\pars{z}
\end{align}
Then, $\ds{{\cal X}^{2}\pars{z} - {\cal X}\pars{z} + z = 0}$. This
$\ds{{\cal X}\pars{z}}$-equation has two solutions:
$\ds{1 \pm \root{1 - 4z} \over 2}$.
Since $\ds{\lim_{z\ \to\ 0}{\cal X}\pars{z} = 0}$, the $\ds{{\cal X}\pars{z}}$
correct solution is given by:
\begin{align}
{\cal X}\pars{z}&={1 - \root{1 - 4z} \over 2}
=\half\bracks{1 - \sum_{n\ =\ 0}^{\infty}{1/2 \choose n}\pars{-4z}^{n}}
=-\,\half\sum_{n\ =\ 1}^{\infty}{1/2 \choose n}\pars{-1}^{n}4^{n}z^{n}
\end{align}
which leads to
\begin{align}{\rm X}\pars{n}&=-\,\half{1/2 \choose n}\pars{-1}^{n}4^{n}
=\pars{-1}^{n + 1}{1/2 \choose n}2^{2n - 1}
=\pars{-1}^{n + 1}\,{\Gamma\pars{3/2} \over n!\,\Gamma\pars{3/2 - n}}\,2^{2n - 1}
\\[5mm]&=\pars{-1}^{n + 1}\root{\pi}\,{1 \over n!}\,
{1 \over \Gamma\pars{3/2 - n}}\,2^{2n - 2}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\pars{1}
\end{align}
However, by using well known Gamma Function identities:
\begin{align}
\Gamma\pars{{3 \over 2} - n}&
={\pi \over \Gamma\pars{n - 1/2}\sin\pars{\pi\bracks{n - 1/2}}}
={\pi\over \bracks{\Gamma\pars{n + 1/2}/\pars{n - 1/2}}\bracks{-\cos\pars{n\pi}}}
\\[5mm]&={\pi\pars{-1}^{n + 1}\pars{n - 1/2} \over \Gamma\pars{n + 1/2}}
=\pi\pars{-1}^{n + 1}\pars{n - 1/2}\,
{\pars{2\pi}^{-1/2}2^{2n - 1/2}\Gamma\pars{n} \over \Gamma\pars{2n}}
\\[5mm]&=\root{\pi}\pars{-1}^{n + 1}2^{2n - 2}\pars{2n - 1}
\,{\pars{n - 1}! \over \pars{2n - 1}!}
=\root{\pi}\pars{-1}^{n + 1}2^{2n - 2}
\,{\pars{n - 1}! \over \pars{2n - 2}!}
\\[5mm]&=\root{\pi}\pars{-1}^{n + 1}2^{2n - 2}\,{1 \over \pars{n - 1}!}\,
{1 \over {2n - 2 \choose n - 1}}
\end{align}
which we'll replace in expression $\pars{1}$:
$$\color{#66f}{\large{\rm X}\pars{n}}
=\color{#66f}{\large{1 \over n}\,{2n - 2 \choose n - 1}}
\quad\imp\quad
\color{#66f}{\large{\rm X}\pars{n + 1}}
=\color{#66f}{\large{1 \over n + 1}\,{2n \choose n}}
$$