Verify one of DeMorgan’s Laws for sets:
$$\bigcap \{S\setminus U:U \in \mathcal U\} = S \setminus \bigcup \{U :U \in \mathcal U\}.$$
Can anyonw show me how to do this? a little confused, thanks
Verify one of DeMorgan’s Laws for sets:
$$\bigcap \{S\setminus U:U \in \mathcal U\} = S \setminus \bigcup \{U :U \in \mathcal U\}.$$
Can anyonw show me how to do this? a little confused, thanks
\begin{align} & x\in\bigcap \{S\smallsetminus U:U \in \mathcal U\} \\[8pt] \iff & \forall U \in\mathcal U \quad x\in S\smallsetminus U \\[8pt] \iff & \forall U\in\mathcal U\quad ( x\in S\ \&\ x\not\in U) \\[8pt] \iff & x\in S\ \&\ \forall U\in\mathcal U\quad x\not\in U \\[8pt] \iff & x\in S\ \&\ \lnot\exists U\in \mathcal U\quad x\in U \\[8pt] \iff & x\in S\ \&\ x\not\in\bigcup \{ U: U\in\mathcal U \} \\[8pt] \iff & x\in S\smallsetminus \bigcup \{ U: U\in\mathcal U \}. \end{align}