$\Gamma(z)$ is log-convex (by the Bohr-Mollerup theorem), continuous and non-vanishing over $\mathbb{R}^+$.
By defining
$$ g(z)=\frac{\Gamma(3z)}{\Gamma(z)\,\Gamma\left(z+\tfrac{1}{3}\right)\,\Gamma\left(z+\tfrac{2}{3}\right)} $$
from the functional identity $\Gamma(s+1)=s\,\Gamma(s)$ we get
$$ \frac{g(z+1)}{g(z)} = \frac{(3z+2)(3z+1)3z}{z\left(z+\tfrac{1}{3}\right)\left(z+\tfrac{2}{3}\right)} = 27$$
hence $g(z)=C\cdot 3^{3z}$ for some constant $C$. From $\Gamma(s)\,\Gamma(1-s)=\frac{\pi}{\sin(\pi s)}$ we get:
$$ g(1)=\frac{2}{\Gamma\left(\tfrac{4}{3}\right)\,\Gamma\left(\tfrac{5}{3}\right)}=\frac{9}{\Gamma\left(\tfrac{1}{3}\right)\,\Gamma\left(\tfrac{2}{3}\right)}=\frac{9}{\pi}\,\sin\frac{\pi}{3}$$
and $C=\frac{1}{2\pi\sqrt{3}}$, finishing the proof of the given identity over $\mathbb{R}^+$.