For a differential equation I have to solve the integral $\frac{dx}{\sqrt{x^2-x}}$. I eventually have to write the solution in the form $ x = ...$ It doesn't matter if I solve the integral myself or if I use a table to find the integral. However, the only helpful integral in an integral table I could find was: $$\frac{dx}{\sqrt{ax^2+bx+c}} = \frac{1}{\sqrt{a}} \ln \left|2ax + b +2\sqrt{a\left({ax^2+bx+c}\right)}\right|$$ Which would in my case give: $$\frac{dx}{\sqrt{x^2-x}} = \ln \left|2x -1 + 2\sqrt{x^2-x}\right|$$ Which has me struggling with the absolute value signs as I need to extract x from the solution. All I know is that $x<0$ which does not seem to help me either (the square root will only be real if $x<-1$).
Is there some other formula for solving this integral which does not involve absolute value signs or which makes extracting $x$ from the solution somewhat easier? Thanks!