Let $(X,d_X)$ be a compact metric space and let $(Y, d_Y)$ be a metric space. Suppose that $\{f_n\}_{n=1}^\infty$ is a sequence of continuous functions on $X$ with values in $Y$, and suppose $f_n \to f$ uniformly on $X$.
Let $\varepsilon>0$ be given. By the definition of uniform convergence, we know there exists $N \in \mathbb{N}$ so that
\begin{equation} \sup_{x \in X} \,d_Y\left(\,f_n(x),f(x)\right)<\frac{\varepsilon}{6} \text{ whenever } n \geq N.
\end{equation}
Since a $(d_X, d_Y)$-continuous function will be uniformly continuous on the compact metric space $(X,d_X)$, we know there exists $\delta_N>0$ so that
\begin{equation} d_Y\left(\,f_N(x),f_N(y)\right)<\frac{\varepsilon}{3} \text{ whenever } d_X(x,y)<\delta_N \text{ and } x,y \in X.
\end{equation}
Hence we have shown that
\begin{align} \ \,d_Y\left(\,f(x),f(y)\right) & \leq d_Y\left(\,f(x),f_N(x)\right)+d_Y\left(\,f_N(x),f_N(y)\right)+d_Y\left(\,f_N(y),f(y)\right) \\& < \frac{\varepsilon}{6}+\frac{\varepsilon}{3}+\frac{\varepsilon}{6}=\frac{4\varepsilon}{6}
\; \text{ whenever } d_X(x,y)<\delta_N \text{ and } x,y \in X.
\end{align}
Notice we have now shown that if $x,y \in X$, $d_X(x,y)<\delta_N$, and $n \geq N$, then
\begin{align} \ \,d_Y\left(\,f_n(x),f_n(y)\right) & \leq d_Y\left(\,f_n(x),f(x)\right)+d_Y\left(\,f(x),f(y)\right)+d_Y\left(\,f(y),f_n(y)\right) \\& < \varepsilon.
\end{align}
Since every function in the finite collection $\{ f_1, \ldots, f_{N-1}\}$ is uniformly continuous on $X$, we know that for $k=1,\ldots, N-1$ there exists a number $\delta_k>0$ so that
\begin{equation}
d_Y\left(\,f_k(x),f_k(y)\right)<\varepsilon \; \text{ whenever } d_X(x,y)<\delta_k \text{ and } x,y \in X.
\end{equation}
Setting $\delta = \min \{\delta_1, \ldots, \delta_{N-1}, \delta_N \}$ shows that the collection of functions $\{f_n: n \in \mathbb{N}\}$ satisfies the definition of a uniformly equicontinuous family on $X$.