1

$$\arctan\left(\dfrac{1}{2}\right)+\arctan\left(\dfrac{1}{3}\right)$$

We were also given a hint of using the trigonometric identity of $\tan(x + y)$

Hint

$$\tan\left(x+y\right)\:=\:\dfrac{\tan x\:+\tan y}{1-\left(\tan x\right)\left(\tan y\right)}$$

Blue
  • 75,673
Gunz
  • 23

3 Answers3

2

Let $x = \arctan \dfrac{1}{2}$ and $y = \arctan \dfrac{1}{3}$. Then, $\tan x = \dfrac{1}{2}$ and $\tan y = \dfrac{1}{3}$.

Using that formula, you can easily compute $\tan(x+y)$. Do you see how to get $x+y$ from that?

JimmyK4542
  • 54,331
1

Let $$\arctan\left(\dfrac{1}{2}\right)+\arctan\left(\dfrac{1}{3}\right)=u $$

Take tangents on both sides using hint given.

$$ \dfrac{1/2 +1/3}{1- {\dfrac{1} {6}}} = tan(u), $$

$$ tan(u) =1$$

$$ u = \pi/4 $$

Narasimham
  • 40,495
0

Yep, sum of tangents identity is the way to go. Write $x=arctan\frac{1}{2}$ and $y=arctan\frac{1}{3}$.

Then $tan(arctan\frac{1}{2}+arctan\frac{1}{3})=\frac{tan(arctan\frac{1}{2})+tan(arctan\frac{1}{3})}{1-(tan(arctan\frac{1}{2}))(tan(arctan\frac{1}{3}))}$

This is equal to $\frac{\frac{1}{2}+\frac{1}{3}}{1-(\frac{1}{2})(\frac{1}{3})}=\frac{\frac{5}{6}}{\frac{5}{6}}=1$

Thus $tan(x+y)=1$ and $x+y=\boxed{\frac{\pi}{4}}$