Preface
Dominated convergence: $$f_n(\omega)\to f(\omega)\quad(\omega\in\Omega)\implies f_n(E)\to f(E)$$ (This gives a tool for analysis of operators.)
Problem
Given a Borel space $\Omega$ and a Hilbert space $\mathcal{H}$.
Consider a spectral measure: $$E:\mathcal{B}(\Omega)\to\mathcal{B}(\mathcal{H})$$
And its Borel measures: $$\nu_\varphi(A):=\|E(A)\varphi\|^2$$ $$\mu_{\varphi\psi}(A):=\langle E(A)\varphi,\psi\rangle$$
Regard its measurable calculus: $$\mathcal{D}f(E):=\left\{\varphi\in\mathcal{H}:\int_\Omega|f|^2\mathrm{d}\nu_\varphi\right\}:\quad\langle f(E)\varphi,\psi\rangle:=\int_\Omega f\mathrm{d}\mu_{\varphi\psi}$$
Suppose pointwise convervence: $$f_n(\omega)\to f(\omega)$$
Denote their common domain by: $$\mathcal{D}:=\bigcap_{n\in\mathbb{N}}\mathcal{D}f_n(E)$$
Define their limiting operator by: $$\mathcal{D}T:=\{\varphi\in\mathcal{D}:f_n(E)\varphi\to\psi\}:\quad T\varphi:=\psi$$ (That is the one taken in Stone's theorem.)
Operator Domain
Can it happen that this domain shrinks?
Domain Criterion
Does a common domain suffice: $$\mathcal{D}f_n(E)\supseteq\mathcal{D}f(E):\quad T\supseteq f(E)$$ In that case one obtains: $$\mathcal{D}f_n(E)\supseteq\mathcal{D}f(E)\iff |f_n|^2\leq C_n(|f|^2+1)$$ So one may miss a dominant for: $$\|f(E)\varphi-f_n(E)\varphi\|^2=\|(f-f_n)(E)\varphi\|^2=\int|f-f_n|^2\mathrm{d}\nu_\varphi$$
But what is an explicit nonexample?
Dominant Criterion
Assuming a dominant one gets: $$|f_n|^2\leq C(|f|^2+1):\quad T=f(E)$$
Clearly one has: $$\mathcal{D}f(E)\subseteq\mathcal{D}f_n(E)$$
So the above shows: $$\|f(E)\varphi-f_n(E)\varphi\|^2=\ldots=\int_\Omega|f-f_n|^2\mathrm{d}\nu_\varphi\to0$$
How to prove the converse inclusion?
Operator Core
Does one have as core: $$\mathcal{D}f_n(E)\supseteq\mathcal{D}f(E):\quad\overline{T}=f(E)$$ (This solves the failure above!)