By way of enrichment here is another algebraic proof using basic
complex variables.
For the sum on the LHS which is
$$\sum_{k=0}^n {2k\choose k} {n+k\choose 2k} (s-t)^{n-k} t^k$$
or rather
$$\sum_{k=0}^n {n\choose k}{n+k\choose k} (s-t)^{n-k} t^k$$
introduce the integral representation
$${n+k\choose k}
= \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{(1+z)^{n+k}}{z^{k+1}} \; dz.$$
This yields for the sum
$$(s-t)^n \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{(1+z)^n}{z}
\sum_{k=0}^n {n\choose k}
\left(\frac{1+z}{z} \frac{t}{s-t} \right)^k \; dz
\\ = (s-t)^n \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{(1+z)^n}{z}
\left(1+ \frac{1+z}{z} \frac{t}{s-t}\right)^n \; dz
\\ = \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{(1+z)^n}{z}
\left(s-t + t \frac{1+z}{z}\right)^n \; dz
\\ = \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{(1+z)^n}{z}
\left(s-t + \frac{t}{z} + t\right)^n \; dz
\\ = \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{(1+z)^n}{z}
\left(s + \frac{t}{z}\right)^n \; dz.$$
For the sum on the RHS which is
$$\sum_{k=0}^n {n\choose k}^2 s^{n-k} t^k$$
introduce the integral representation
$${n\choose k}
= \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{(1+z)^n}{z^{k+1}} \; dz.$$
This yields for the sum the integral
$$\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{(1+z)^n}{z}
\sum_{k=0}^n {n\choose k} \frac{1}{z^k} s^{n-k} t^k \; dz$$
or
$$\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{(1+z)^n}{z} \left(s+\frac{t}{z}\right)^n \; dz.$$
We have the identical integrals for LHS and RHS, done. We have not
made use of the properties of complex integrals here so this
computation can also be presented using just algebra of generating
functions.
There is another computation in the same spirit at this
MSE link.
Apparently this method is due to Egorychev although some of it is
probably folklore.