6

I search for a simple proof for the fact that $\operatorname{Pic}(\mathbb Z[\sqrt{-5}])=\mathbb Z/2\mathbb Z$, where $\operatorname{Pic}(R)$ is the Picard group of the ring $R$ - the set of isomorphism classes of f.g. projective $R$-modules of of rank $1$.

I appreciate anybody cooperating!

user26857
  • 52,094
karparvar
  • 5,730
  • 1
  • 14
  • 36

1 Answers1

4

For Dedekind domains we have $\operatorname{Pic}(R)\simeq\operatorname{Cl}(R)$, where $\operatorname{Cl}(R)$ is the ideal class group of $R$. Your case is treated here in detail.

user26857
  • 52,094