$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\norm}[1]{\left\vert\left\vert\, #1\,\right\vert\right\vert}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
$\ds{\int_{0}^{\infty}\ln\pars{x^{2} + 2kx\cos\pars{b} + k^{2}\over
x^{2} + 2kx\cos\pars{a} + k^2}\,{\dd x \over x}:\ {\large ?}
\,,\qquad 0 <\ a\,,\ b\ <\pi\,,\quad k > 0.}$
\begin{align}&\overbrace{\color{#66f}{\large\int_{0}^{\infty}
\ln\pars{x^{2} + 2kx\cos\pars{b} + k^{2}\over
x^{2} + 2kx\cos\pars{a} + k^2}\,{\dd x \over x}}}
^{\dsc{x \over k}\ \ds{\mapsto}\ \dsc{x}}
\\[5mm]&=\int_{0}^{\infty}
\ln\pars{x^{2} + 2x\cos\pars{b} + 1\over x^{2} + 2x\cos\pars{a} + 1}
\,{\dd x \over x}
=\lim_{R\ \to\ \infty}\bracks{\fermi\pars{a,R} - \fermi\pars{b,R}}
\\[5mm]&\mbox{where}\
\begin{array}{|c|}\hline\\
\ \fermi\pars{\mu,R}\equiv
\int_{0}^{R}\ln\pars{x}
{2x + 2\cos\pars{\mu}\over x^{2} + 2x\cos\pars{\mu} + 1}\,\dd x\,,\quad 0 < \mu < \pi\
\\ \\ \hline
\end{array}\qquad\qquad\quad\pars{1}
\end{align}
Note that $\ds{r_{-} \equiv \exp\pars{\bracks{\pi - \mu}\ic}}$ and
$\ds{r_{+} \equiv \exp\pars{\bracks{\pi + \mu}\ic}}$ are the roots of
$\ds{x^{2} + 2x\cos\pars{\mu} + 1 = 0}$ such that $\ds{\pars{~\mbox{with}\ R > 1~}}$:
\begin{align}&\dsc{\int_{0}^{R}\ln^{2}\pars{x}
{x + \cos\pars{\mu}\over x^{2} + 2x\cos\pars{\mu} + 1}\,\dd x}
\\[5mm]&=2\pi\ic\bracks{\half\,\ln^{2}\pars{r_{-}} + \half\,\ln^{2}\pars{r_{+}}}
-\int_{R}^{0}\bracks{\ln\pars{x} + 2\pi\ic}^{2}
{x + \cos\pars{\mu}\over x^{2} + 2x\cos\pars{\mu} + 1}\,\dd x
\\[5mm]&=\pi\ic\bracks{-\pars{\pi - \mu}^{2} - \pars{\pi + \mu}^{2}}
+\dsc{\int_{0}^{R}\ln^{2}\pars{x}
{x + \cos\pars{\mu}\over x^{2} + 2x\cos\pars{\mu} + 1}\,\dd x}
\\[5mm]&+2\pi\ic\ \overbrace{\int_{0}^{R}\ln\pars{x}
{2x + 2\cos\pars{\mu}\over x^{2} + 2x\cos\pars{\mu} + 1}\,\dd x}
^{\dsc{\fermi\pars{\mu,R}}}\ +\
\pars{2\pi\ic}^{2}\int_{0}^{R}
{x + \cos\pars{\mu} \over x^{2} + 2x\cos\pars{\mu} + 1}\,\dd x
\\[5mm]&-{\mathfrak C}\pars{R,\mu}
\end{align}
where $\ds{\left.{\mathfrak C}\pars{R,\mu}
\equiv\oint\ln^{2}\pars{z}
{z + \cos\pars{\mu}\over z^{2} + 2z\cos\pars{\mu} + 1}\,\dd z\,\right\vert
_{z\ \equiv\ R\expo{\ic\theta}\,,\ 0\ <\ \theta\ <\ 2\pi}}$
This expression leads to:
\begin{align}
0&=-2\pi\ic\pars{\pi^{2} + \mu^{2}} + 2\pi\ic\int_{0}^{R}\ln\pars{x}
{2x + 2\cos\pars{\mu}\over x^{2} + 2x\cos\pars{\mu} + 1}\,\dd x
\\[5mm]&+\pars{2\pi\ic}^{2}\int_{\cos\pars{\mu}}^{R + \cos\pars{\mu}}
{x \over x^{2} + \sin^{2}\pars{\mu}}\,\dd x - {\mathfrak C}\pars{R,\mu}
\end{align}
and
\begin{align}
\fermi\pars{\mu,R}&=\int_{0}^{R}\ln\pars{x}
{2x + 2\cos\pars{\mu}\over x^{2} + 2x\cos\pars{\mu} + 1}\,\dd x
\\[5mm]&=\pi^{2} + \mu^{2}
-\pi\ic\ln\pars{\bracks{R + \cos\pars{\mu}}^{2} + \sin^{2}\pars{\mu}}
+ {{\mathfrak C}\pars{R,\mu} \over 2\pi\ic}
\end{align}
In the $\ds{R \to \infty}$ we'll have:
\begin{align}
\lim_{R \to\ \infty}\bracks{\fermi\pars{a,R} - \fermi\pars{b,R}}
&=a^{2} - b^{2}
\end{align}
such that expression $\pars{1}$ is reduced to:
\begin{align}&\color{#66f}{\large\int_{0}^{\infty}
\ln\pars{x^{2} + 2kx\cos\pars{b} + k^{2}\over
x^{2} + 2kx\cos\pars{a} + k^2}\,{\dd x \over x}}
=\color{#66f}{\large a^{2} - b^{2}}
\end{align}