I want to solve this problem, but I have no idea how I can start:
If $K$ is a field, $(a_1,...,a_n) \in K^n,$ and $I$ the ideal $I=\langle x_1-a_1,...,x_n-a_n\rangle$, then how can we prove that $I$ is a maximal ideal?
One example: Is $\langle x^2+1 \rangle$ a maximal ideal of $ \mathbb{R}[x]$?