While working on something, I have stumbled across the following expression $$\frac{\Gamma \left({\frac{k}{2\left(1-H\right)}} + \frac{1}{2H}\right)}{\Gamma \left(\frac{1}{2H}\right)}$$ where $0 < H \le 1$ is the Hurst Constant and $k \in Z^{+}$.
I am wondering, since $H$ can be irrational can I still use the first identity of the ratio of two Gamma functions given here. If I understand prerequisite condition correctly then in order to be able to use this identity, I need to establish $${\frac{k}{2\left(1-H\right)}} + \frac{1}{2H} + \frac{1}{2H} \\= {\frac{k}{2\left(1-H\right)}} + \frac{1}{H}\in Z$$ I am not quite sure how to proceed here, any help or advice would be much appreciated.
Edit 1 Actually on second thought this is not well posed question as $H=3/4$ would make it not work.
Edit 2 The real task I am undertaking is to derive a characteristic function of a distribution which I suspect is a transformed Gamma Distribution.
I have managed to reduce this derivation to $$\left(\frac{2\eta}{\zeta}\right)^{{\frac{1}{2\left(1-H\right)}}}\sum\limits_{k=0}^{\infty}\frac{1}{k!}\left(\frac{2\eta it}{\zeta}\right)^k\frac{\Gamma \left({\frac{k}{2\left(1-H\right)}} + \frac{\zeta}{2}\right)}{\Gamma \left(\frac{\zeta}{2}\right)}$$
where $\zeta = \frac{1}{H}$ and $\eta = \frac{H^{\left(2H-1\right)}}{\mu^{2H}\left(1-H\right)^{2\left(H-1\right)}}$. I am not sure how to manipulate it further so it appears more like a Gamma distribution's characteristic function.