The question is to compute $t=\tan \left( {{\pi \over 4} - 3i} \right)$.
So I change it into $$t={{\sin ({\pi \over 4} - 3i)} \over {\cos ({\pi \over 4} - 3i)}}$$ Then $$\eqalign{t= & {{{e^{i({\pi \over 4} - 3i)}} - {e^{ - i({\pi \over 4} - 3i)}}} \over {2i}} \div {{{e^{i({\pi \over 4} - 3i)}} + {e^{ - i({\pi \over 4} - 3i)}}} \over 2} \cr =& {{{e^{i({\pi \over 4} - 3i)}} - {e^{ - i({\pi \over 4} - 3i)}}} \over {2i}} \times {2 \over {{e^{i({\pi \over 4} - 3i)}} + {e^{ - i({\pi \over 4} - 3i)}}}} \cr =& {{{e^{i({\pi \over 4} - 3i)}} - {e^{ - i({\pi \over 4} - 3i)}}} \over {{e^{i({\pi \over 4} - 3i)}} + {e^{ - i({\pi \over 4} - 3i)}}}} \cr} $$
Are my steps correct and what i should do next?