Let $x>2$ and $\frac{1}{x}+\frac{2}{x^3}+\frac{6}{x^5}+\cdots+\frac{\binom{2n}{n}}{x^{2n+1}}+\cdots=1$. How find $x$?
Asked
Active
Viewed 103 times
2
-
2Does the fact $$ \sum_{n=0}^{\infty} \binom{2n}{n}z^{n} = (1-4z)^{-1/2}, \quad |z| < 1/2$$ help you? – Sangchul Lee Dec 30 '14 at 12:40