Is $\mathbf Q(\sqrt 2,\sqrt 3,\sqrt 5)=\mathbf Q(\sqrt 2+\sqrt 3+\sqrt 5)$?
Say $L=\mathbf Q(\sqrt 2,\sqrt 3,\sqrt 5)$ and $K=\mathbf Q(\sqrt 2+\sqrt 3+\sqrt 5)$.
It is easy to show that $\mathbf Q(\sqrt 2,\sqrt 3)=\mathbf Q(\sqrt 2+\sqrt 3)$. Also, $[L:\mathbf Q]=8$.
If we assume that $L\neq K$, then we will have $[K:\mathbf Q]=4$. The reason for this is that $K(\sqrt 5)=L$.
Now since $K$ is a superfield of $\mathbf Q$, and $[\mathbf Q(\sqrt 5):\mathbf Q]=2$, we have $[K(\sqrt 5):K]\leq 2$.
Since we have assume that $K\neq L$, we must have $[K(\sqrt 5):K]=2$. By the tower law, $[K(\sqrt 5):K][K:\mathbf Q]=[K(\sqrt 5):\mathbf Q]=[L:\mathbf Q]=8$, giving $[K:\mathbf Q]=4$.
I am not able to make any further progress.
Generalization:
Let $p_1,\ldots,p_n$ be pairwise distinct primes. Is $\mathbf Q(\sqrt p_1+\cdots+\sqrt p_n)=\mathbf Q(\sqrt p_1,\ldots,\sqrt p_n)$?
Just something I think might be useful in solving the above: It is known that if $p_1,\ldots,p_n$ are pairwise distinct primes, then $[\mathbf Q(\sqrt p_1,\ldots,\sqrt p_n):\mathbf Q]=2^n$.