Given a collection $\mathcal A$ of sets and a large set $X$. What are $\bigcup_{S\in\mathcal A}S$ and $\bigcap_{S\in\mathcal A}S$ ?
The problem is if $\mathcal A$ is empty, what do $\bigcup_{S\in\mathcal A}S$ and $\bigcap_{S\in\mathcal A}S$ mean ?
Muknres's "topology" page 12, if $\mathcal A$ is empty, then $\bigcup_{S\in\mathcal A} S=\emptyset$ and $\bigcap_{S\in\mathcal A}S=X$.
I 'm puzzled about this. Can someone tell me why? Thanks a lot!