How to simplify $$\arctan \left(\frac{1}{2}\tan (2A)\right) + \arctan (\cot (A)) + \arctan (\cot ^{3}(A)) $$ for $0< A< \pi /4$?
This is one of the problems in a book I'm using. It is actually an objective question , with 4 options given , so i just put $A=\pi /4$ (even though technically its disallowed as $0< A< \pi /4$) and got the answer as $\pi $ which was one of the options , so that must be the answer (and it is weirdly written in options as $4 \arctan (1) $ ).
Still , I'm not able to actually solve this problem. I know the formula for sum of three arctans , but it gets just too messy and looks hard to simplify and it is not obvious that the answer will be constant for all $0< A< \pi /4$. And I don't know of any other way to approach such problems.