In my lecture notes there is the following example:
The diophantine equation $y^2=x^3+7$ has no solutions.
Proof:
If the equation would have a solution, let $(x_0, y_0)$, $y_0^2=x_0^3+7$, then $x_0$ is odd.
(If $x_0$ is even, $x_0=2k \Rightarrow x_0^3 \equiv 0 \mod 8$, so $x_0^3+7\equiv 7 \pmod 8$
$\Rightarrow y_0^2\equiv 7 \pmod 8$, contradiction, since $y_0^2 \equiv 0, 1, 4 \pmod 8$ )
$$y_0^2=x_0^3+7 \Rightarrow y_0^2+1=x_0^3+8=(x_0+2)(x_0^2-2x_0+4)=(x_0+2)[(x_0-1)^2+3]$$
$(x_0-1)^2+3 \in \mathbb{N}$
$(x_0-1)^2+3>1$
It stands that $(x_0-1)^2+3 \equiv 3 \pmod 4$.
There is at least one prime divisor of $(x_0-1)^2+3$, of the form $p \equiv 3 \pmod 4$, that means that $$(x_0-1)^2+3 \equiv 0 \pmod p , \text{ where } p \equiv 3 \pmod 4 \\ =y_0^2+1 \equiv 0 \pmod p \\ \Rightarrow y_0^2 \equiv -1 \pmod p$$
$$Y^2 \equiv -1 \pmod p \text{ has a solution } \Leftrightarrow \left ( -\frac{1}{p} \right )=1 \Leftrightarrow (-1)^{\frac{p-1}{2}}=1 \Leftrightarrow p \equiv 1 \pmod 4$$
So $y_0^2 \equiv -1 \pmod p$ doesn't have a solution.
$$$$
Can you explain to me why we check at $\pmod 8$ if $x$ is odd or even???
And do we look after that n $\pmod 4$ ???