4

enter image description here

I tried to use the angles ($\cos$ and $\tan$) and the Intercept theorem but I don't know where is the trench in the figure. Is it just the base?

  • Could someone write down the steps by drawing each figure that's gonna be needed in your proof?

I think it usually leads to polynomial equations of degree 4:

$$x^4-6x^3-36x^2+216x-324=0$$

but I'm not sure and I need the steps for writing it in LaTex.

I think it is about $$6,326 m $$ by using Newton's method.

someone
  • 129
  • 1
  • 11
Educ
  • 4,780
  • Why do you keep asking for "simple" ways? First you should find any way that works. Crossed ladder problems are rarely "simple" and usually lead to polynomial equations of degree $4$. – Rory Daulton Jan 29 '15 at 10:54
  • so what do you suggest to me to do – Educ Jan 29 '15 at 10:55
  • Given the ladder lengths $8$ and $10$ and the trench width $w$, use trigonometry to find an expression that gives you the height of the intersection point. Then set that expression to $3$ and solve. That way is straightforward. If you get that equation and cannot solve it, say so, write the equation, and ask for the solution. That will get you more respect here. – Rory Daulton Jan 29 '15 at 10:58
  • i think $$x^{4}-6x^{3}-36x^2+216x-324=0$$ but i need the steps to write it in latex – Educ Jan 29 '15 at 11:01
  • 1
    For more information see here or search for "crossed ladder". – Rory Daulton Jan 29 '15 at 11:04
  • its about $$x=6,326 m$$ by using Newton's method – Educ Jan 29 '15 at 11:05
  • @RoryDaulton is the trench the distance between two walls or distance between them+the high of each of them ? – Educ Jan 29 '15 at 12:55
  • In these equations, $x$ is the width of the trench, the distance between the two walls. Your value of $x$ makes $1599942041036476=0$ so it seems a little off. My graphing calculator gives $x\approx 7.74463787384$ as the only solution for $0\le x\le 10$. – Rory Daulton Jan 29 '15 at 13:30
  • could you join me in chat room – Educ Jan 29 '15 at 13:43
  • @Educ I would really like to know how you've come to this equation. Using http://en.wikipedia.org/wiki/Crossed_ladders_problem I don't know how to find the values of $A$ and $B$. – Svend Tveskæg Jan 29 '15 at 16:14
  • 1
    @SvendTveskæg sorry but now i'm kind of busy with latex i'll add my solution later – Educ Jan 29 '15 at 16:21
  • why we should choose $0≤x≤10$ – Educ Feb 01 '15 at 18:48
  • @Educ If $x > 10$ the ladder wouldn't be leaning against the wall... and $x<0$ seems a little inconvenient as a distance. – PierreCarre Mar 29 '19 at 13:57
  • @Educ There is a confusion here: in your quartic, $x$ is the height at which the $10\ m$ ladder reaches the opposite wall, while the final value you give is the correct width of the trench. – someone Apr 01 '19 at 15:24

1 Answers1

5

Crossed Ladders

There is no need to use trigonometry here: the Intercept theorem leads to the first equation of $\left(1\right)$ and the Pythagorean theorem leads to the second and third equations of $\left(1\right)$.
The crossed ladders problem is a special case of the system of equations $\left(1\right)$.

\begin{equation} \begin{split} h_1h_2&=h\left(h_1+h_2\right)\\ h_1^2&=l_2^2-w^2\\ h_2^2&=l_1^2-w^2\\ \end{split} \tag 1 \end{equation}

$h$, $l_1$, and $l_2$ are known real numbers.
$h_1$, $h_2$, and $w$ are unknown complex numbers.
The general analytical solution can be found as shown below and applied to any such problem.

Solving the general case

Let $\left(j,k\right)\in\lbrace\left(1,2\right),\left(2,1\right)\rbrace$.
Let the real numbers:

\begin{equation} \begin{split} c_{jA}&=l_j^2-l_k^2\\ c_{jB}&=3\left(2c_{jA}-3h^2\right)\\ c_{jC}&=c_{jA}\left(c_{jA}^2+54h^4\right)\\ c_{jD}&=6h^4c_{jA}\left(c_{jA}^2+2h^2c_{jA}+h^4\right)\\ c_{jE}&=c_{jA}\left(c_{jA}^5-3h^2c_{jA}^4+39h^4c_{jA}^3-91h^6c_{jA}^2+324h^8c_{jA}-54h^{10}\right)\\ c_F&=9\left(l_j^2+l_k^2-2h^2\right)\\ c_G&=3\left(c_{jA}^2+12h^4\right)\\ c_H&=3\left(c_{jA}^2+27h^4\right)\\ c_I&=c_{jA}^2\left(c_{jA}^4+36h^4c_{jA}^2+216h^8\right)\\ c_J&=96h^6\left( \begin{split} &4h^8c_{jA}^4+2h^4\left(l_j^4-l_k^4\right)\left(l_j^4+6l_j^2l_k^2+l_k^4\right)\left(4h^2c_{jA}-3l_j^4+3l_k^4\right)\\ &+h^2\left(l_j^4-l_k^4\right)^2\left(l_j^2+l_k^2\right)\left(l_j^4+10l_j^2l_k^2+l_k^4\right)-l_j^2l_k^2\left(l_j^4-l_k^4\right)^2\left(l_j^2+l_k^2\right)^2\\ \end{split} \right)\\ c_K&=\left( \begin{split} &\left(l_j^4-l_k^4\right)^5\left(l_j^4-l_k^4-12h^2c_{jA}\right) +48h^4\left(l_j^4-l_k^4\right)^4\left(2l_j^4-l_j^2l_k^2+2l_k^4\right)\\ &-16h^6c_{jA}\left(l_j^4-l_k^4\right)^3\left(37l_j^4+34l_j^2l_k^2+37l_k^4\right)\\ &+48h^8\left(l_j^4-l_k^4\right)^2\left(53l_j^8-2l_j^6l_k^2-30l_j^4l_k^4-2l_j^2l_k^6+53l_k^8\right)\\ &-96h^{10}c_{jA}\left(l_j^4-l_k^4\right)\left(83l_j^8+100l_j^6l_k^2+66l_j^4l_k^4+100l_j^2l_k^6+83l_k^8\right)\\ &+256h^{12}c_{jA}^2\left(70l_j^8+161l_j^6l_k^2+186l_j^4l_k^4+161l_j^2l_k^6+70l_k^8\right)\\ &-6912h^{14}c_{jA}\left(l_j^4-l_k^4\right)\left(3l_j^4+2l_j^2l_k^2+3l_k^4\right)+3456h^{16}c_{jA}^4\\ \end{split} \right)\\ R_{j1}&=3\sqrt[3]{c_{jC}+6h^2c_{jA}\sqrt{c_H}}+3\sqrt[3]{c_{jC}-6h^2c_{jA}\sqrt{c_H}}\\ R_{j2}&=\ \text{sgn}\left(hc_{jA}+h^3\right)\sqrt{R_{j1}-c_{jB}}\\ R_{j3}&=6\sqrt{3\sqrt[3]{c_{jE}+c_{jD}\sqrt{c_H}}+3\sqrt[3]{c_{jE}-c_{jD}\sqrt{c_H}}+3c_{jA}^2-12h^2c_{jA}+9h^4}\\ R_{j4}&=\sqrt{R_{j3}-R_{j1}-2c_{jB}}\\ R_{j5}&=\left(-1\right)^j\sqrt{R_{j3}+R_{j1}+2c_{jB}}\\ R_6&=3\sqrt[3]{c_I+24h^6c_{jA}^2\sqrt{c_H}}+3\sqrt[3]{c_I-24h^6c_{jA}^2\sqrt{c_H}}\\ R_7&=3\sqrt{R_6+c_G}\\ R_8&=6\ \text{sgn}\left(3h+R_{j2}\right)\sqrt{2c_G-R_6+12\left|h\right|^3\sqrt{ \begin{split} &36h^2-6\sqrt[3]{27h^2c_{jA}^2+3c_{jA}^2\sqrt{c_H}}\\ &-6\sqrt[3]{27h^2c_{jA}^2-3c_{jA}^2\sqrt{c_H}}\\ \end{split} }}\\ R_9&=3\sqrt{ \begin{split} &6\ \text{sgn}\left(R_8^2+8c_FR_7+36R_6-72c_G\right)\sqrt{ \begin{split} &3\sqrt[3]{c_K+c_J\sqrt{c_H}}+3\sqrt[3]{c_K-c_J\sqrt{c_H}}\\ &+3\left(l_j^4-l_k^4\right)^2-12h^2c_{jA}\left(l_j^4-l_k^4\right)\\ &+48h^4\left(l_j^4+l_j^2l_k^2+l_k^4\right)\\ \end{split} }\\ &+2R_6+6\left(l_j^4+4l_j^2l_k^2+l_k^4\right)-36h^2\left(l_j^2+l_k^2\right)\\ \end{split} }\\ c_L&=1-\left(-1\right)^j\ \text{sgn}\left(3h-R_{j2}\right)-\left|\ \text{sgn}\left(3h-R_{j2}\right)\right|\\ c_M&=1+\left(-1\right)^j\ \text{sgn}\left(3h-R_{j2}\right)-\left|\ \text{sgn}\left(3h-R_{j2}\right)\right|\\ c_N&=\frac{1+\ \text{sgn}\left(2c_F-2R_7+R_8\right)}{2}\\ c_O&=\frac{1-\ \text{sgn}\left(2c_F-2R_7+R_8\right)}{2}\\ c_P&=\frac{1+\ \text{sgn}\left(2c_F-2R_7-R_8\right)}{2}\\ c_Q&=\frac{1-\ \text{sgn}\left(2c_F-2R_7-R_8\right)}{2}\\ \end{split} \notag \end{equation}

According to the first equation of $\left(1\right)$:

\begin{equation} h_k\left(h_j-h\right)=hh_j \notag \end{equation}

Squaring this last equation:

\begin{equation} h_k^2\left(h_j^2-2hh_j+h^2\right)=h^2h_j^2 \tag 2 \end{equation}

Combining the last two equations of $\left(1\right)$:

\begin{equation} h_k^2=h_j^2+c_{jA} \notag \end{equation}

Combining this last equation with $\left(2\right)$:

\begin{equation} h_j^4-2hh_j^3+c_{jA}h_j^2-2hc_{jA}h_j+h^2c_{jA}=0 \tag 3 \end{equation}

Let $h_{j1}$, $h_{j2}$, $h_{j3}$, and $h_{j4}$ be the solutions to $\left(3\right)$:

\begin{equation} \left(h_j-h_{j1}\right)\left(h_j-h_{j2}\right)\left(h_j-h_{j3}\right)\left(h_j-h_{j4}\right)=0 \tag 4 \end{equation}

Let the complex numbers $x_{j1}$, $x_{j2}$, and $x_{j3}$ be such that:

\begin{equation} \begin{split} h_{j1}&=\frac{3h+\left(-1\right)^j\left(\sqrt{x_{j1}}-\sqrt{x_{j2}}\right)-\ \text{sgn}\left(hc_{jA}+h^3\right)\sqrt{x_{j3}}}{6}\\ h_{j2}&=\frac{3h-\left(-1\right)^j\left(\sqrt{x_{j1}}-\sqrt{x_{j2}}\right)-\ \text{sgn}\left(hc_{jA}+h^3\right)\sqrt{x_{j3}}}{6}\\ h_{j3}&=\frac{3h-\sqrt{x_{j1}}-\sqrt{x_{j2}}+\ \text{sgn}\left(hc_{jA}+h^3\right)\sqrt{x_{j3}}}{6}\\ \end{split} \notag \end{equation}

Expanding $\left(4\right)$ and equating its coefficients with the ones of $\left(3\right)$:

\begin{equation} \begin{split} h_{j4}&=\frac{3h+\sqrt{x_{j1}}+\sqrt{x_{j2}}+\ \text{sgn}\left(hc_{jA}+h^3\right)\sqrt{x_{j3}}}{6}\\ c_{jA}&=\frac{27h^2-\left(x_{j1}+x_{j2}+x_{j3}\right)}{18}\\ 2hc_{jA}&=\frac{27h^3-3h\left(x_{j1}+x_{j2}+x_{j3}\right)+2\ \text{sgn}\left(hc_{jA}+h^3\right)\sqrt{x_{j1}}\sqrt{x_{j2}}\sqrt{x_{j3}}}{54}\\ h^2c_{jA}&=\frac{1}{1296}\left( \begin{split} &\left(9h^2-\left(x_{j1}+x_{j2}+x_{j3}\right)\right)^2+24h\ \text{sgn}\left(hc_{jA}+h^3\right)\sqrt{x_{j1}}\sqrt{x_{j2}}\sqrt{x_{j3}}\\ &-4\left(x_{j1}x_{j2}+x_{j1}x_{j3}+x_{j2}x_{j3}\right)\\ \end{split} \right)\\ \end{split} \notag \end{equation}

Combining these last three equations:

\begin{equation} \begin{split} x_{j1}+x_{j2}+x_{j3}&=-3c_{jB}\\ \ \text{sgn}\left(hc_{jA}+h^3\right)\sqrt{x_{j1}}\sqrt{x_{j2}}\sqrt{x_{j3}}&=27h\left(c_{jA}+h^2\right)\\ x_{j1}x_{j2}+x_{j1}x_{j3}+x_{j2}x_{j3}&=3\left(c_{jB}^2-9c_{jA}^2\right)\\ \end{split} \tag 5 \end{equation}

$x_{j1}$, $x_{j2}$, and $x_{j3}$ are the solutions to the equation of unknown $x_j$:

\begin{equation} \left(x_j-x_{j1}\right)\left(x_j-x_{j2}\right)\left(x_j-x_{j3}\right)=0 \notag \end{equation}

Expanding this last equation:

\begin{equation} x_j^3+3c_{jB}x_j^2+3\left(c_{jB}^2-9c_{jA}^2\right)x_j-729h^2\left(c_{jA}+h^2\right)^2=0 \notag \end{equation}

Let $\text{i}$ be the imaginary unit.
Let the complex numbers $y_{j1}$ and $y_{j2}$ be such that:

\begin{equation} \begin{split} x_{j1}&=\frac{3\left(\text{i}\sqrt{3}-1\right)\sqrt[3]{y_{j1}}-3\left(\text{i}\sqrt{3}+1\right)\sqrt[3]{y_{j2}}-2c_{jB}}{2}\\ x_{j2}&=\frac{3\left(\text{i}\sqrt{3}-1\right)\sqrt[3]{y_{j2}}-3\left(\text{i}\sqrt{3}+1\right)\sqrt[3]{y_{j1}}-2c_{jB}}{2}\\ \end{split} \notag \end{equation}

Combining these last two equations with $\left(5\right)$:

\begin{equation} \begin{split} x_{j3}&=3\sqrt[3]{y_{j1}}+3\sqrt[3]{y_{j2}}-c_{jB}\\ 729h^2\left(c_{jA}+h^2\right)^2&=27\left(y_{j1}+y_{j2}\right)-c_{jB}^3+27c_{jB}\sqrt[3]{y_{j1}}\sqrt[3]{y_{j2}}\\ 3\left(c_{jB}^2-9c_{jA}^2\right)&=3c_{jB}^2-27\sqrt[3]{y_{j1}}\sqrt[3]{y_{j2}}\\ \end{split} \notag \end{equation}

Combining these last two equations:

\begin{equation} \begin{split} y_{j1}+y_{j2}&=2c_{jC}\\ \sqrt[3]{y_{j1}}\sqrt[3]{y_{j2}}&=c_{jA}^2\\ \end{split} \tag 6 \end{equation}

$y_{j1}$ and $y_{j2}$ are the solutions to the equation of unknown $y_j$:

\begin{equation} \left(y_j-y_{j1}\right)\left(y_j-y_{j2}\right)=0 \notag \end{equation}

Expanding this last equation:

\begin{equation} y_j^2-2c_{jC}y_j+c_{jA}^6=0 \notag \end{equation}

Let the complex number $z_{j1}$ be such that:

\begin{equation} y_{j1}=c_{jC}+\sqrt{z_{j1}} \notag \end{equation}

Combining this last equation with $\left(6\right)$:

\begin{equation} \begin{split} y_{j2}&=c_{jC}-\sqrt{z_{j1}}\\ c_{jA}^6&=c_{jC}^2-z_{j1}\\ \end{split} \notag \end{equation}

Solving this last equation:

\begin{equation} z_{j1}=36h^4c_{jA}^2c_H \notag \end{equation}

Thus:

\begin{equation} \begin{split} y_{j1}&=c_{jC}+6h^2\left|c_{jA}\right|\sqrt{c_H}\\ y_{j2}&=c_{jC}-6h^2\left|c_{jA}\right|\sqrt{c_H}\\ \end{split} \notag \end{equation}

Thus:

\begin{equation} \begin{split} x_{j1}&=\frac{3\left(\text{i}\sqrt{3}-1\right)\sqrt[3]{c_{jC}+6h^2\left|c_{jA}\right|\sqrt{c_H}}-3\left(\text{i}\sqrt{3}+1\right)\sqrt[3]{c_{jC}-6h^2\left|c_{jA}\right|\sqrt{c_H}}-2c_{jB}}{2}\\ x_{j2}&=\frac{3\left(\text{i}\sqrt{3}-1\right)\sqrt[3]{c_{jC}-6h^2\left|c_{jA}\right|\sqrt{c_H}}-3\left(\text{i}\sqrt{3}+1\right)\sqrt[3]{c_{jC}+6h^2\left|c_{jA}\right|\sqrt{c_H}}-2c_{jB}}{2}\\ x_{j3}&=3\sqrt[3]{c_{jC}+6h^2\left|c_{jA}\right|\sqrt{c_H}}+3\sqrt[3]{c_{jC}-6h^2\left|c_{jA}\right|\sqrt{c_H}}-c_{jB}\\ \end{split} \notag \end{equation}

Thus:

\begin{equation} \begin{split} h_{j1}&=\frac{3h-R_{j2}}{6}+\text{i}\frac{R_{j5}}{6}\\ h_{j2}&=\frac{3h-R_{j2}}{6}+\text{i}\frac{-R_{j5}}{6}\\ h_{j3}&=\frac{3h+R_{j2}-R_{j4}}{6}\\ h_{j4}&=\frac{3h+R_{j2}+R_{j4}}{6}\\ \end{split} \tag 7 \end{equation}

According to the last two equations of $\left(1\right)$:

\begin{equation} w^2=l_k^2-h_j^2 \notag \end{equation}

Let $m\in\lbrace1,2,3,4\rbrace$.
Let the complex numbers $w_{m+}$ and $w_{m-}$ be such that:

\begin{equation} \begin{split} w_{m+}&=\sqrt{l_k^2-h_{jm}^2}\\ w_{m-}&=-\sqrt{l_k^2-h_{jm}^2}\\ \end{split} \notag \end{equation}

Combining these last two equations with $\left(7\right)$:

\begin{equation} \begin{split} w_{1+}&=\frac{\sqrt{R_9+R_7+c_F}}{6}+\text{i}\frac{c_L\sqrt{R_9-R_7-c_F}}{6}\\ w_{1-}&=\frac{-\sqrt{R_9+R_7+c_F}}{6}+\text{i}\frac{-c_L\sqrt{R_9-R_7-c_F}}{6}\\ w_{2+}&=\frac{\sqrt{R_9+R_7+c_F}}{6}+\text{i}\frac{c_M\sqrt{R_9-R_7-c_F}}{6}\\ w_{2-}&=\frac{-\sqrt{R_9+R_7+c_F}}{6}+\text{i}\frac{-c_M\sqrt{R_9-R_7-c_F}}{6}\\ w_{3+}&=\frac{c_N\sqrt{\left|2c_F-2R_7+R_8\right|}}{6}+\text{i}\frac{c_O\sqrt{\left|2c_F-2R_7+R_8\right|}}{6}\\ w_{3-}&=\frac{-c_N\sqrt{\left|2c_F-2R_7+R_8\right|}}{6}+\text{i}\frac{-c_O\sqrt{\left|2c_F-2R_7+R_8\right|}}{6}\\ w_{4+}&=\frac{c_P\sqrt{\left|2c_F-2R_7-R_8\right|}}{6}+\text{i}\frac{c_Q\sqrt{\left|2c_F-2R_7-R_8\right|}}{6}\\ w_{4-}&=\frac{-c_P\sqrt{\left|2c_F-2R_7-R_8\right|}}{6}+\text{i}\frac{-c_Q\sqrt{\left|2c_F-2R_7-R_8\right|}}{6}\\ \end{split} \notag \end{equation}

Let $n\in\lbrace-,+\rbrace$.
The solutions to $\left(1\right)$ are the eight triplets $\left(h_{jm},h_{km},w_{mn}\right)$.

Applying the solution to the given problem

Let $h=3\ m$, $l_j=8\ m$, and $l_k=10\ m$.
The values in the only triplet containing only real positive values are:

\begin{equation} \begin{split} R_{k1}^{'}&=6\sqrt[3]{35+3\sqrt{129}}+6\sqrt[3]{35-3\sqrt{129}}\\ R_6^{'}&=3\sqrt[3]{262+6\sqrt{129}}+3\sqrt[3]{262-6\sqrt{129}}\\ h_{j4}&=\frac{3-\sqrt{33-R_{k1}^{'}}+\sqrt{66+R_{k1}^{'}+6\sqrt{105+6\sqrt[3]{3547+27\sqrt{129}}+6\sqrt[3]{3547-27\sqrt{129}}}}}{2}\\ &\approx7,7446378738165\ m\\ h_{k4}&=\frac{\sqrt{6\sqrt{6\sqrt[3]{1269+75\sqrt{129}}+6\sqrt[3]{1269-75\sqrt{129}}+9}-R_{k1}^{'}-30}+\sqrt{R_{k1}^{'}-15}+3}{2}\\ &\approx4,8968781684408\ m\\ w_{4+}&=\sqrt{73-3\sqrt{21+R_6^{'}}-3\sqrt{42-R_6^{'}+6\sqrt{9-3\sqrt[3]{54+6\sqrt{129}}-3\sqrt[3]{54-6\sqrt{129}}}}}\\ &\approx6,3261824352012\ m\\ \end{split} \notag \end{equation}

someone
  • 129
  • 1
  • 11
  • 8
    Phew! For a minute there, I thought we would have to use trigonometry :-) – TonyK Mar 29 '19 at 13:31
  • @TonyK Yes, it seems that's what the OP had first intended. However I don't think that trigonometric functions would prevent one from having to solve a quartic in this problem. Thus, it's really a good thing that we don't have to use them. – someone Apr 01 '19 at 15:21