Prove $\forall x\in \mathbb R$, if $x>0$ then $(x+\frac 1 x \ge 2)$
I think a proof by contradiction is the easiest in this case, so we have: $\forall x\in \mathbb R :x>0\wedge \neg(x+\frac 1 x \ge 2)\iff \forall x\in \mathbb R :x>0\wedge (x+\frac 1 x < 2)$
Take $x=100$ and we get an immediate contradiction $100+\frac 1 {100}< 2$
Did I use proof by contradiction correctly?
Is this statement $\forall x (p\to q)$ or $(\forall x (p)) \to q$?