$$\lim_{x\to0}\left(\frac{\sin(x)}{x}\right)^{\frac{1}{x^2}} \stackrel{?}{=} 0$$
My calculations (usage of L'Hôpital's rule will be denoted by L under the equal sign =):
(Sorry for the small font, but you can zoom in to see better with Firefox)
$$
\begin{align}
& \lim_{x\to0}\left(\frac{\sin(x)}{x}\right)^{\frac{1}{x^2}} = \\
& \lim_{x\to0}e^{\ln\left(\left(\frac{\sin(x)}{x}\right)^{\frac{1}{x^2}}\right)} = \\
& e^{\lim_{x\to0}\frac{1}{x^2}\ln\left(\left(\frac{\sin(x)}{x}\right)\right)} = \\
& e^{\lim_{x\to0}\frac{\ln\left(\left(\frac{\sin(x)}{x}\right)\right)}{x^2}} \stackrel{\frac{0}{0}}{\stackrel{=}{L}} \\
& e^{\lim_{x\to0}\frac{x}{2x \sin(x)}\cdot\frac{\cos(x)x -1\cdot\sin(x)}{x^2}} = \\
& e^{\lim_{x\to0}\frac{1}{2}\cdot\frac{1}{\sin(x)}\cdot\left(\frac{\cos(x)}{x} - \frac{\sin(x)}{x^2}\right)} = \\
& e^{\lim_{x\to0}\frac{1}{2}\cdot\left(\frac{\tan(x)}{x} - \frac{1}{x^2}\right)} = \\
& e^{\frac{1}{2}\cdot\left(\lim_{x\to0}\frac{\tan(x)}{x} - \lim_{x\to0}\frac{1}{x^2}\right)} \stackrel{\frac{0}{0}}{\stackrel{=}{L}} \quad\quad \text{(LHopital only for the left lim)} \\
& e^{\frac{1}{2}\cdot\left(\lim_{x\to0}\frac{1}{\cos^2(x)} - \lim_{x\to0}\frac{1}{x^2}\right)} = \\
& e^{\frac{1}{2}\cdot\left(1 - \infty\right)} = \\
& e^{-\infty} = 0\\
\end{align}
$$
Edit #1:
Continuing after the mistake of the $\tan(x)$:
$$\begin{align} & e^{\lim_{x\to0}\frac{1}{2}\cdot\frac{1}{\sin(x)}\cdot\left(\frac{\cos(x)}{x} - \frac{\sin(x)}{x^2}\right)} = \\ & e^{\lim_{x\to0}\frac{1}{2}\cdot\left(\frac{\cot(x)}{x} - \frac{1}{x^2}\right)} = \\ & e^{\lim_{x\to0}\frac{1}{2}\cdot\left(\frac{\frac{1}{\tan(x)}}{x} - \frac{1}{x^2}\right)} = \\ & e^{\frac{1}{2}\cdot\left(\lim_{x\to0}\frac{\frac{1}{\tan(x)}}{x} - \lim_{x\to0}\frac{1}{x^2}\right)} \stackrel{\frac{0}{0}}{\stackrel{=}{L}} \quad\quad \text{(LHopital only for the left lim)} \\ & e^{\frac{1}{2}\cdot\left(\lim_{x\to0}\frac{\frac{\frac{-1}{\cos^2(x)}}{\tan^2(x)}}{1} - \lim_{x\to0}\frac{1}{x^2}\right)} = \\ & e^{\frac{1}{2}\cdot\left(\lim_{x\to0}\frac{-1}{\sin^2(x)} - \lim_{x\to0}\frac{1}{x^2}\right)} = \\ & e^{\frac{1}{2}\cdot\left(-\infty - \infty\right)} = 0\\ \end{align} $$
$$\lim_{x\to 0} (\frac{\sin x}{x})^{\frac1{x^2}} =\lim_{x\to 0}\exp\left(\frac{1}{x^2}\ln\left(\frac{\sin x -x}{x}+1\right)\right) \sim \lim_{x\to 0}\exp\left(\frac{1}{6}\frac{\ln\left(1-\frac{x^2}{6}\right)}{\frac{x^2}{6}}\right)= \exp(-\frac16)$$
Given that $$\sin x -x \sim -\frac{x^3}{6}~~~~and ~~~~ \lim_{X\to 0} \frac{\ln\left(1-X\right)}{X} = -1$$
– Guy Fsone Nov 27 '17 at 15:31