Let $n,a,b \in \mathbb Z^+$ be such that $n\mid a^n-b^n$ , then how to prove that $n\mid {\dfrac {a^n-b^n}{a-b}}$ ?
My try :
$d=\gcd(n,a-b),$ so $d \mid{\dfrac {a^n-b^n}{a-b}}.$ Also $\,n \mid(a-b)\left({\dfrac {a^n-b^n}{a-b}}\right),\;$ so $\;\dfrac nd\mid\dfrac {(a-b)}d\Big({\dfrac {a^n-b^n}{a-b}}\Big)$.
Now, since $\gcd\left(\dfrac nd ,\dfrac {(a-b)}d \right)=1,\;$ so $\dfrac nd\mid{\dfrac {a^n-b^n}{a-b}},\;$ it follows that $\;\operatorname{lcm}\left(d, \dfrac nd \right)\mid {\dfrac {a^n-b^n}{a-b}}.$
But then I am stuck , Please help . Thanks in advance