Look at the final answer. The final answer tells you this series cannot be calculated simply. Here I propose a solution although it is not a good solution:
$$\Sigma_{n=1}^\infty \frac1{(n+a)(n+b)}=\frac{H_a-H_b}{a-b}$$
Where $H_x$ is harmonic number of $x$.
(It can be replaced with digamma function too. Although $\psi_0(x)\neq H_x$, the result is remained the same.)
Computing $H_x$ is not easy too. It is as hard as calculation of integrals. But if you have its table, you can calculate the series.
In this case, if you know $H_{\frac16}$ and $H_{\frac23}$ you can solve this series (Odd condition!).
$$\Sigma_{n=0}^\infty \frac{(-1)^n}{(3n+1)}=\Sigma_{n=0}^\infty (\frac1{(6n+1)}-\frac1{(6n+4)})=\Sigma_{n=0}^\infty \frac3{(6n+1)(6n+4)}=1-\frac14+\frac3{36}\Sigma_{n=1}^\infty \frac1{(n+\frac16)(6n+\frac46)}=1-\frac14+\frac1{12}\times\frac{H_{\frac46}-H_{\frac16}}{\frac46-\frac16}=\frac34+\frac16(H_{\frac23}-H_{\frac16})$$
I need to know these two harmonic numbers (the big disadvantage of this method):
$$H_{\frac23}=\frac32+\frac\pi{2 \sqrt3}-\frac{3 \log 3}2$$
$$H_{\frac16}=6-\frac{\sqrt3 \pi}2-\frac{3 \log 3}2-\log4$$
$$H_{\frac23}-H_{\frac16}=-\frac92+\frac{2\pi \sqrt3}3+2\log 2$$
$$\Sigma_{n=0}^\infty \frac{(-1)^n}{(3n+1)}=\frac34+\frac16 (-\frac92+\frac{2\pi \sqrt3}3+2\log 2)$$
$$\therefore ~~~\Sigma_{n=0}^\infty \frac{(-1)^n}{(3n+1)}=\frac{\pi \sqrt3}9+\frac{\log2}3$$