4

This is a problem in Heuer (2009) "Lerbuch der Analysis Teil 1" on page 366. I assume that the proof should use $e = \sum\limits_{k = 0}^{\infty} \frac 1 {k!}$, but I cannot come further.

taro
  • 317

2 Answers2

2

If $a_n=\frac{(2n - 1)^{2n - 1}}{2^{2n} (2n)!}$. Compute the limit

$$\begin{align}\lim \frac{a_{n+1}}{a_n}&=\lim \frac{\frac{(2n + 1)^{2n + 1}}{2^{2n+2} (2n+2)!}}{\frac{(2n - 1)^{2n - 1}}{2^{2n} (2n)!}}\\&=\lim\frac{(2n+1)(2n+1)}{4(2n+1)(2n+2)}\left(\frac{2n+1}{2n-1}\right)^{2n-1}\\&=\frac{1}{4}\lim\left[\left(1+\frac{2}{2n-1}\right)^{\frac{2n-1}{2}}\right]^2\\&=\frac{1}{4}e^2\end{align}$$

Since $\lim\frac{a_{n+1}}{a_n}=\frac{e^2}{4}$ it follows that $\lim a_n^{1/n}=\frac{e^2}{4}$.

Tom
  • 648
1

Hint 1: $x = e^{\log x}$

Hint 2: $\log n! = \sum\limits_{k=1}^{n} \log k $

Hint 3: $\int_{1}^{n} \log x dx < \sum\limits_{k=1}^{n} \log k < \int_{1}^{n+1} \log x dx$

rubik
  • 9,344
Alex
  • 19,262