0

What is the easiest (preferably inductional) way without approximation of the sum_ to prove the following inequality: $\frac{1}{1^2}+\frac{1}{2^2} + \ldots +\frac{1}{n^2} \le 2 - \frac{1}{n}$

kurkowski
  • 639

2 Answers2

4

hint: $\dfrac{1}{n^2} \leq \dfrac{1}{n(n-1)} = \dfrac{1}{n-1} - \dfrac{1}{n}$

DeepSea
  • 77,651
0

$$\sum_{k=1}^n\frac{1}{k^2}\ \le \sup_{n\ \in\ \Bbb N - \{0,1,2\}}\{\sum_{k=1}^n\frac{1}{k^2}\} = \sum_{k=1}^{\infty}\frac{1}{k^2} = \frac{\pi^2}{6} \le 2 - \frac{1}{n}, \forall \ n\ge 3$$

Moreover for $n \in \{1,2\}$ the property holds.