Suppose $F$ be a field of non-zero characteristic $p$ , is it true that there is only one group homomorphism $f:(F,+) \to (F$ \ $\{0\},.)$ ? I have tried taking $x \in F$ , then $px=0$ , so
$(f(x))^p=f(px)=f(0)=1$ , so $f(x)$ has finite order for every $x \in F$ , $f(x) \in (F$ \ $\{0\},.)$ , and
$o(f(x))|p$ . But then I am stuck . Please help