For $A \in M(2, \mathbb R)$ , if $A$ has a square root $B \in M(2, \mathbb R)$ , then $\det A=(\det B)^2$ is non-negative ; and if
$s:=\sqrt{\det A}$ ; then using $A^2+s^2I=(trA)A$ , evaluating $(A+sI)^2=(2s+trA)A$ and
$(A-sI)^2=(trA-2s)A$ , I can calculate the square root of $A$ . But can this method be extended
to higher order matrices ? For higher order matrices , if the matrix is diagonalizable say
$A=XDX^{-1}$ where $D$ is the diagonal matrix , then we can find a square root $S$ of $D$ taking the
real square roots of the diagonal entries of $D$ if this diagonal entries are non-negative , then
$XSX^{-1}$ is a square root of $A$ ; but what if a diagonal entry is negative ? More fundamentally ,
when can we say that a square root of $A \in M(n,\mathbb R)$ exists in $M(n,\mathbb R)$ ?