1

I'm usually pretty good with definite integrals, but this one's got me completely lost. Any help is appreciated! (And the sooner the better, please!)

$$\int_0^{\pi/2}\cos^{8}x\,dx.$$

Empty
  • 13,012
Katy
  • 21

2 Answers2

2

We have, $$\int_{0}^{\pi /2}\cos^8x\,dx$$

$$=\int_{0}^{\pi /2}\sin^0x \cos^8x\,dx$$

$$=\frac{\Gamma\left(\frac{0+1}{2}\right)\Gamma\left(\frac{8+1}{2}\right)}{2.\Gamma\left(\frac{0+8+2}{2}\right)}$$

$$=\frac{\Gamma(1/2)\Gamma(9/2)}{2.\Gamma(5)}$$

$$=\frac{35\pi}{2^8}.$$

Empty
  • 13,012
0

Hint: $\cos^8(x)$ can be written as :$$(\cos^2(x))^4=\left(\frac12\left(1+\cos(2x)\right)\right)^4=\frac{1}{16}\cos^4(2x)+\frac14\cos^3(2x)+\frac38\cos^2(2x)+\frac14\cos(2x)+\frac{1}{16}$$

Now, keep using the half-angle identity on the terms until no powers remain. Integrating should be straight-forward after that.

You will then have: $$\frac{1}{128}\int_{0}^{\pi/2}(56\cos(2x)+28\cos(4x)+8\cos(6x)+\cos(8x)+35)dx$$