Solve
$$\tan^{-1}\left(\frac{1-x}{1+x}\right)=\frac12\tan^{-1}(x)$$
I used the formula
$$2\tan^{-1}(x)=\tan^{-1}\frac{2(x)}{1-x^2}$$
and got the final answer as
$$\tan^{-1}\left(\frac{1-x}{1+x}\right)=\frac12\tan^{-1}\left(\frac{1-x^2}{2(x)}\right)$$
which is not right.