Let $\mathcal{U}$ now be an ultrafilter on $\mathbb{N}$. View $\mathcal{U}$ as a subset of $2^\mathbb{N}$.
Question:
If $\mathcal{U}$ is non-principal then $\mathcal{U}$ does not have the Baire property in $2^\mathbb{N}$.
An ultrafilter is principal if some $x\in X$, $\{x\} \in \mathcal{U}$ or equivalently, $\mathcal{U}=\{A\in2^{\Bbb N}: x\in A \}$ for some $x\in X$.
Thanks.