Let $S(n)$ denote the number of ordered pairs $(x,y)$ satisfying $\frac{1}{x}+\frac{1}{y}=\frac{1}{n}$, where $n>1$ and $x,y,nāN$
1) Find the value of $S(6)$.
2) Show that if $n$ is prime then $S(n)=3$ always. I couldn't get a correct method to proceed.