Define $$A = \left\lbrace\frac{2^k}{3^l}: k,l\in\mathbb{Z}\right\rbrace.$$
Is the set $A$ dense in $\mathbb{R}^+$?
A canonical example of a dense set is $\left\lbrace\frac{n}{2^k}: n,k\in \mathbb{Z}\right\rbrace$. For the set $A$, I guess it's not dense. To show that, I have to show that for some $x\in\mathbb{R}^+$, no element of $A$ falls into the interval $(x-\varepsilon,x+\varepsilon)$ for some $\varepsilon>0$.