For any give the postive integer $n$,and for any give prime number $p$.
show that
there exsit postive integer $x,y$ such $$p\mid(x^2+y^2+n)$$
My approach is the following:
Assmue that $n=1,p=2$,we choose$(x,y)=(1,2)$ $$2\mid6=1^2+2^2+1$$
Assmue that $n=1,p=3$, we choose $(x,y)=(1,2)$ $$3\mid6=1^2+2^2+1$$ Assume that $n=1,p=5$,we choose $(x,y)=(2,5)$ $$5\mid30=2^2+5^2+1$$ Assume that $n=2,p=2$, we choose $(x,y)=(2,2)$ $$2\mid10=2^2+2^2+2$$ Assume that $n=2,p=3$ we choose $(x,y)=(2,3)$ $$3\mid15=2^2+3^2+2$$ Assume that $n=2,p=5$,we choose $(x,y)=(3,3)$ $$5\mid20=3^2+3^2+2$$ and so on
Now I'm stuck and don't know how to proceed