1

Suppose the set $M :=\{ (x,y) : 0 \leq x ,y \leq 1\}$. Now we define

$$ u := \arccos \sqrt{\frac{1-x^2}{1-x^2y^2}} \ \ \ \ \ \text{and} \ \ \ \ \ v:= \arccos \sqrt{\frac{1-y^2}{1-x^2 y^2}}.$$

How can I show, that this new coordinatens $(u,v)$ map each point $(x,y) \in M$ bijective to a point in the new set

$$ \widetilde{M} := \left\lbrace (u,v) : u,v \geq 0, u+v \leq \frac{\pi}{2} \right\rbrace?$$

I found out that we have $x = \frac{\sin u}{\cos v}$ and $y = \frac{\sin v }{\cos u}$ but I do not understand how to get the condition $u+v \leq \frac{\pi}{2} $.

  • Related: https://math.stackexchange.com/questions/7807/a-limit-and-a-coordinate-trigonometric-transformation-of-the-interior-points-of – Hans Lundmark Dec 05 '22 at 15:22

2 Answers2

1

One can show that $$ u := \arccos \sqrt{\frac{1-x^2}{1-x^2y^2}} \quad \text{and} \quad v:= \arccos \sqrt{\frac{1-y^2}{1-x^2 y^2}} \quad \tag 1 $$ is a bijective mapping of the open rectangle $M :=\{ (x,y) : 0 < x ,y < 1\}$ onto the open triangle $\widetilde{M} := \left\lbrace (u,v) : u,v > 0, u+v < \frac{\pi}{2} \right\rbrace$. The inverse mapping is $$ x := \frac{\sin u}{\cos v} \quad \text{and} \quad y := \frac{\sin v }{\cos u} \tag 2 $$ as shown below.

Since $$ (u(1, y), v(1, y)) = (\frac \pi 2, 0) \\ (u(x, 1), v(x, 1)) = (0, \frac \pi 2) \\ $$ the mapping cannot be extended one-to-one to the boundary of the square $M$.

Now let $(x, y) \in M$ and define $(u,v)$ by $(1)$. It is clear that both $u$ and $v$ are in the range $(0, \frac \pi 2)$. To show that $u + v < \frac \pi 2$, we compute $$ \cos (u + v) = \cos u \cos v - \sin u \sin v = \cos u \cos v - \sqrt{1 - \cos^2 u} \sqrt{1 - \cos^2 v} \\ = \sqrt{\frac{1-x^2}{1-x^2y^2}} \sqrt{\frac{1-y^2}{1-x^2 y^2}} - \sqrt{\frac{x^2(1-y^2)}{1-x^2y^2}} \sqrt{\frac{y^2(1-x^2)}{1-x^2 y^2}} \\ = (1 - xy) \sqrt{\frac{1-x^2}{1-x^2y^2}} \sqrt{\frac{1-y^2}{1-x^2 y^2}} > 0 \quad . $$ It follows that $u + v < \frac \pi 2$.

So up to now we know that $(1)$ is a mapping from the square $M$ into the triangle $\widetilde{M}$. To show that the mapping is in fact bijective, we verify that $(2)$ is the inverse mapping from $\widetilde{M}$ to $M$.

Let $(u, v) \in \widetilde{M}$ and define $(x, y)$ by $(2)$. It is clear that both $x$ and $y$ are positive. From $u + v < \frac \pi 2$ it follows that $$ \sin u < \sin(\frac \pi 2 - v) = \cos v \quad \Longrightarrow \quad x < 1 \, ,\\ \sin v < \sin(\frac \pi 2 - u) = \cos u \quad \Longrightarrow \quad y < 1 \, .$$ and therefore $(x, y) \in M$. To verify that $(x, y)$ is mapped back exactly to the given $(u, v)$ is a straightforward calculation and I'll leave that final part to you :)

Martin R
  • 113,040
0

From your equations: $$\begin{gathered} u(x,y) = {\cos ^{ - 1}}(\sqrt {\frac{{1 - {x^2}}}{{1 - {x^2}{y^2}}}} ) \hfill \\ v(x,y) = \sqrt {\frac{{1 - {y^2}}}{{1 - {x^2}{y^2}}}} \hfill \\ \end{gathered} $$ I got: $$\begin{gathered} co{s^2}(u) = 1 - {v^2} \cdot {x^2} \hfill \\ {v^2} \cdot {x^2} = si{n^2}(u) \hfill \\ {x^2} = \frac{{si{n^2}(u)}}{{{v^2}}} \hfill \\ \end{gathered} $$ and $$\begin{gathered} {v^2} = \frac{{1 - {y^2}}}{{1 - \frac{{si{n^2}(u)}}{{{v^2}}}{y^2}}} \hfill \\ {v^2} - si{n^2}(u){y^2} = 1 - {y^2} \hfill \\ {y^2}co{s^2}(u) = 1 - {v^2} \hfill \\ {y^2} = \frac{{1 - {v^2}}}{{co{s^2}(u)}} \hfill \\ \end{gathered}$$ This gives me $$\begin{gathered} x(u,v) = \frac{{sin(u)}}{v} \hfill \\ y(u,v) = \frac{{\sqrt {1 - {v^2}} }}{{cos(u)}} \hfill \\ \end{gathered} $$ for $u$ and $v$ in an allowed range. The condition for "allowed" is $$u + v \leqslant \frac{\pi }{2}$$ otherwise you can't do root operation.

Frieder
  • 1,655