$$\lim_{x\to \infty}((x^2+4x+1)^{1/2}- x)$$
The answer is 2, I don't know how to get it though. Thanks for your help.
$$\lim_{x\to \infty}((x^2+4x+1)^{1/2}- x)$$
The answer is 2, I don't know how to get it though. Thanks for your help.
$$\left(\sqrt{x^2+4x+1}-x\right)\cdot\frac{\sqrt{x^2+4x+1}+x}{\sqrt{x^2+4x+1}+x}=\frac{4x+1}{\sqrt{x^2+4x+1}+x}=$$
$$\frac{4x+1}{\sqrt{x^2+4x+1}+x}\cdot\frac{\frac1x}{\frac1x}=\frac{4+\frac1x}{\sqrt{1+\frac4x+\frac1{x^2}}+1}\xrightarrow[x\to\infty]{}...$$
$(x^2+4x+1)^{1/2} = x(1+ 4/x+ 1/x^2)^{1/2}$
Using Taylor's theorem $$ (1+ 4/x+ 1/x^2)^{1/2} = 1 + 2/x + \mathcal{O}(x^{-2}) $$ So $$ (x^2+4x+1)^{1/2} = x + 2 + \mathcal{O}(x^{-1}) $$ The result is now clear.