6

How can I prove the following inequality:

Given $ a,b>0 $ and $a^2>b $, we have $a>\sqrt b$

Thank you.

Anonymous
  • 2,388

2 Answers2

21

$a^2 > b \Leftrightarrow (a - \sqrt{b})(a + \sqrt{b}) > 0$

Both of these factors must be positive, since both $a$ and $\sqrt{b}$ are positive. In particular, $a - \sqrt{b} > 0$


Indeed, I stand on the shoulders of giants...

The Chaz 2.0
  • 10,464
6

Suppose otherwise, i.e. that $a\leq \sqrt{b}$. Then $a^2=a\cdot a\leq \sqrt{b}\cdot a\leq \sqrt{b}\cdot\sqrt{b}=b$, so $a^2\leq b$, contradicting the fact that $a^2>\sqrt{b}$.

Alex Becker
  • 60,569