Original question :
To Prove : $(A\cap B)\cup(A\cap \bar{B}) = A$
My Response to it :
We have,
$(A\cap B)\cup(A\cap \bar{B}) = A$
$\Rightarrow (A \cap B) + (A \cap \bar{B}) - (A \cap B \cap A \cap \bar{B})$
$\Rightarrow (A \cap B) + (A \cap \bar {B}) - \emptyset$
$\Rightarrow (A \cap B) + (A \cap \bar {B})$
$\Rightarrow (A \cap B) + A \cap (U-B)$
$\Rightarrow (A \cap B) + (A \cap U) - (A \cap B)$
$\Rightarrow A$
The identity I used above was: $(X \cup Y) = X + Y - (X \cap Y)$
However, my professor says the identity I used is flawed and is wrong thus making my solution wrong too. Please provide your insight on what you think.