1

Original question :

To Prove : $(A\cap B)\cup(A\cap \bar{B}) = A$

My Response to it :

We have,

$(A\cap B)\cup(A\cap \bar{B}) = A$

$\Rightarrow (A \cap B) + (A \cap \bar{B}) - (A \cap B \cap A \cap \bar{B})$

$\Rightarrow (A \cap B) + (A \cap \bar {B}) - \emptyset$

$\Rightarrow (A \cap B) + (A \cap \bar {B})$

$\Rightarrow (A \cap B) + A \cap (U-B)$

$\Rightarrow (A \cap B) + (A \cap U) - (A \cap B)$

$\Rightarrow A$

The identity I used above was: $(X \cup Y) = X + Y - (X \cap Y)$

However, my professor says the identity I used is flawed and is wrong thus making my solution wrong too. Please provide your insight on what you think.

1 Answers1

1

$(A \cap B) \cup (A \cap \bar B) =$

$=A \cap (B \cup \bar B)=$ (inverse distributive rule of $\cap$)
$=A \cap S=$ (S is the universal set)
$=A$ (q.e.d.)