It may be helpful to swap order of summation. Note change in index limits.
$$\begin{align}
\sum_{i=1}^{n}\sum_{j=i}^n c(n-j)&=\sum_{j=1}^n\sum_{i=1}^j c(n-j)\\
&=c\sum_{j=1}^{n}j(n-j)\\
&=c\left[n\sum_{i=1}^{n}j-\sum_{i=1}^n j^2\right]\\
&=c\left[n\cdot \frac12n(n+1)-\frac16n(n+1)(2n+1)\right]\\
&=\frac c6(n-1)n(n+1)
\end{align}$$
Alternatively:
$$\begin{align}
\sum_{i=1}^nj(n-j)&=(n-1)\sum_{i=1}^nj-\sum_{i=1}^nj(j-1)\\
&=(n-1)\sum_{i=1}^n\binom j1-2\sum_{i=1}^n\binom j2\\
&=(n-1)\binom {n+1}2-2\binom {n+1}3\\
&=3\binom {n+1}3-2\binom{n+1}3\\
&=\binom{n+1}3\\
c\sum_{i=1}^nj(n-j)&=c\binom{n+1}3\\
&=\frac c6 (n-1)n(n+1)\end{align}$$