I need to prove $\sum\limits_{i=2}^{n}\frac{1}{(i-1)i}$ = $\frac{(n-1)}{n}$ using induction. I am getting stuck midway through the inductive step.
Here is what I have:
$\forall n\geq 2$, where $n\in\mathbb{N}, P(n)$ is the statement "$\sum\limits_{i=2}^{n}\frac{1}{(i-1)i}$ = $\frac{(n-1)}{n}$".
Base case:
$\sum\limits_{i=2}^{2}\frac{1}{(i-1)i}$ = $\frac{1}{2}$ = $\frac{(2-1)}{2}$ so $P(2)$ is true.
Inductive assumption: Assume $P(n)$ is true. Need to show $\sum\limits_{i=2}^{n+1}\frac{1}{(i-1)i}$ = $\frac{((n+1)-1)}{(n+1)}$.
$\sum\limits_{i=2}^{n}\frac{1}{(i-1)i}$ + $\frac{1}{n^{2}}$ = $\frac{(n-1)}{n}$ + $\frac{1}{n^{2}}$
= $\frac{n(n-1) + 1}{n^{2}}$ = $\frac{n^{2}-n+1}{n^{2}}$ I got stuck here and tried working backward from $\frac{((n+1)-1)}{(n+1)}$, which gives me:
$\frac{((n+1)-1)}{(n+1)}$ = $\frac{n}{(n+1)}$
Any suggestions on what to do next or where I may be going wrong?