Let $(a_n)$ be a sequence such that $\lim_{n\to\infty} (a_{n+1}-a_n)=0$ and $|a_{n+2}-a_n|<\frac{1}{2^n}$ for all $n$. I have to decide whether or not $(a_n)$ converges.
My attempt: I think it converges. Let $b_n=a_{2n}, c_n=a_{2n-1}$. Then:
$$|b_{n+1}-b_n|=|a_{2n+2}-a_{2n}|<\frac{1}{2^{2n}}$$
$$|c_{n+1}-c_n|=|a_{2n+1}-a_{2n-1}|<\frac{1}{2^{2n-1}}$$
Thus $(b_n)$ and $(c_n)$ are Cauchy (proven in another question) and converge. Because $(a_{2n}-a_{2n-1})$ is a subsequence of $(a_{n+1}-a_n)$ it also converges to $0$. Thus $$\lim_{n\to\infty} (b_n-c_n)=\lim_{n\to\infty} (a_{2n}-a_{2n-1})=0$$
or
$$\lim_{n\to\infty} b_n=\lim_{n\to\infty}c_n$$
Because the subsequences $(b_n)$ and $(c_n)$ cover the sequence $(a_n)$ and because they converge to the same point, $(a_n)$ converges.
Is it correct? What do you think?